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Abstract

The effectiveness of a drug is dependent on accumulation at the site of action at therapeutic levels, however,
challenges such as rapid renal clearance, degradation or non-specific accumulation requires drug delivery
enabling technologies. Albumin is a natural transport protein with multiple ligand binding sites, cellular
receptor engagement, and a long circulatory half-life due to interaction with the recycling neonatal Fc
receptor. Exploitation of these properties promotes albumin as an attractive candidate for half-life extension
and targeted intracellular delivery of drugs attached by covalent conjugation, genetic fusions, association or
ligand-mediated association. This review will give an overview of albumin-based products with focus on the
natural biological properties and molecular interactions that can be harnessed for the design of a next-generation drug
delivery platform.

Keywords: Human serum albumin (HSA), Drugs, Albumin-binding, Albumin fusions, Half-life extension, Intracellular
delivery, Neonatal Fc receptor (FcRn), Molecular medicine, Targeted drug delivery

Background
The therapeutic efficiency of a drug is dependent on
the availability at the target site at a concentration
and frequency that maximises the therapeutic action
and minimizes side-effects to the patient. Therapeutic
drugs are often low-molecular weight molecules that
result in non-specific distribution, with a molecular
weight below the renal filtration threshold resulting in
rapid renal clearance and concomitant short plasma
circulatory time [1, 2].
Drug delivery technology has been utilised to over-

come these obstacles. The standard method to extend
the circulatory half-life of drugs, particularly peptide and
protein-based, is by PEGylation using poly (ethylene
glycol) (PEG) conjugation [3]. The PEGylation approach
for drug delivery applications has proved to be effective
with a large number of marketed drugs, for example,
Adagen® (pegademase bovine) and Pegasys® (PEG-
interferon alfa-2α) [4]. Drawbacks to PEGylation, how-
ever, include accumulation of high molecular weight
PEG in tissues such as the liver [5] and the necessity
for chemical conjugation of the drug. An alternative

strategy is incorporation in nanoscale carriers (nanocar-
riers) of a size range that enables transit across tissue and
cellular barriers [6]. Examples include liposomes, poly-
meric nanoparticles, dendrimers, and solid lipid nanopar-
ticles [6–9]. A requirement for complex designs that
includes surface engineering to reduce host foreign body
responses, whilst maintaining cellular targeting capabil-
ities, and possible toxicological issues due to non-specific
accumulation of synthetic material would seemingly re-
strict clinical application in the short-term. This is exem-
plified by the limited number of nanocarrier-based
marketed products. Albumin is an attractive next-
generation “self” drug delivery approach. It is the most
abundant plasma protein involved in transport of nutri-
ents in the body facilitated by its multiple binding sites
and circulatory half-life of ~19 days [10]. It is crucial, how-
ever, to understand its biological interactions in order to
harness its properties towards drug delivery solutions.

Biological properties of albumin
Albumin is the most abundant plasma protein in human
blood (35–50 g/L human serum) with a molecular weight
of 66.5 kDa [11]. It is synthesised in the liver hepatocytes
with ~ 10–15 g of albumin produced and released into the
vascular space daily [10, 12]. Circulation in the blood
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proceeds for an extended period of ~ 19 days [10, 13,
14]. This long half-life is thought mainly due to neo-
natal Fc receptor (FcRn)-mediated recycling, and the
Megalin/Cubilin-complex rescue from renal clearance.
Termination of the circulation is typically caused by
catabolism of albumin in organs such as the skin and
muscles [2, 12]. Modifications of albumin, for instance by
non-enzymatic glycosylation, is thought to trigger lyso-
somal degradation [10, 15, 16]. Albumin contains multiple
hydrophobic binding pockets and naturally serves as a
transporter of a variety of different ligands such as fatty
acids and steroids as well as different drugs [10]. Further-
more, the surface of albumin is negatively charged [10]
making it highly water-soluble.

Structure, domains and binding sites
The overall three-dimensional structure of human serum
albumin (HSA), shown by X-ray crystallography, is
heart-shaped (Fig. 1) [17]. Structurally, albumin consists
of three homologous domains I, II, and III. Each domain
contains two sub-domains (A and B), which contains 4
and 6 α-helices, respectively. The two main drug binding
sites are named Sudlow site I and Sudlow site II [18].
Site I, positioned in subdomain IIA, reversibly binds the
anticoagulant drug warfarin [19, 20]. In the subdomain
IIIA Sudlow Site II is located. It is known as the benzo-
diazepine binding site and diazepam, which is used in
the treatment of anxiety, binds with high affinity [19].
Fig. 1 Crystal structure of human serum albumin. The illustration shows th
acid (PDB 1e7e). The three domains of albumin are shown in purple (IA), re
depicture disulfide bridges, and yellow spheres highlight the available cyst
Site I and site II are the primary binding sites though it
has been found that some drugs bind elsewhere in the
protein [18, 21, 22].
Drugs and drug metabolites can also bind covalently

to albumin. Glucuronidation of drugs as part of metabol-
ism, often occurs to drugs having a carboxylic acid group
resulting in acid glucuronides [19]. These acid glucuronide
metabolites can bind covalently to HSA [23]. This can
occur by nucleophilic attack from NH2, OH or SH in a
protein to the acyl carbon of the glucuronide, giving a
covalent attachment of drug to protein without retention
of the glucuronide moiety. Another mechanism is the
migration of the acyl group from position 1 in the sugar
ring to 2, 3, or 4 position leading to tautomerism of the
sugar ring. Aldehyde in the open tautomer structure
reacts with a lysine group in the protein resulting in a
covalent attachment of drug to protein with a glucuronic
acid in between [19, 23, 24]. Covalent binding to albumin
will naturally affect the clearance and metabolic des-
tiny of such drugs. Drug metabolites such as furosem-
ide, salicylic acid, and Nonsteroidal Anti-Inflammatory
Drugs (NSAIDs) like ibuprofen react covalently with
HSA [19].
Albumin contains 35 cysteine residues of which 34

form disulfide bridges internally in the structure. These
contribute to the high stability of albumin. The availabil-
ity of a free cysteine residue at position 34 (cys34) for
covalent attachment of drugs is an attractive feature for
e tertiary structure of human serum albumin in complex with stearic
d (IB), green (IIA), orange (IIB), blue (IIIA), and violet (IIIB). Yellow sticks
eine 34 in domain IA
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drug delivery as it holds a free thiol group (−SH)
accounting for 80 % of thiols in the plasma [17]. Cys34
is located on the outer surface of albumin distant from
the main interior drug binding sites and has, therefore,
been a focus for covalent conjugation of drugs [11, 25, 26].

Albumin cellular receptors and engagement
Interaction with cellular receptors is responsible for
albumin’s recycling, cellular transcytosis and hyphen-
ate if word on two lines. Receptors include glycopro-
teins Gp60, Gp30 and Gp18, a secreted protein acidic and
rich in cysteine (SPARC), the Megalin/Cubilin complex,
and the neonatal Fc receptor (FcRn) [27–33]. Understand-
ing the interaction with these cellular receptors is crucial
for specific delivery of drug cargoes.

Gp60 receptor
The Gp60 receptor, named because its molecular size of
60 kDa, also referred to as albondin, is a vascular endothe-
lial membrane protein, which acts to increase membrane
permeability for receptor-mediated uptake of circulating
proteins [32, 34–38]. Binding of proteins such as albumin
to the Gp60 receptor is proposed to activate the mem-
brane protein caveolin-1, which induces the formation of
a caveolae vesicle. The caveolae then migrate through the
cytoplasm, fuses with the basolateral membrane and
releases material from the caveolae into the interstitium.
Gp60, therefore, is thought to facilitate cellular transcyto-
sis of albumin and redirect albumin from lysosomal
degradation [36–43].
In 1986 work from Ghitescu et al. confirmed albumin-

binding surface receptor engagement in capillary endo-
thelium in mouse lung, heart and diaphragm by showing
albumin-gold complexes were adsorbed at specific bind-
ings sites associated with the plasmalemmal vesicles
[44]. Work by Schnitzer and Oh, showed ~ 50 % of
albumin transport was facilitated by binding to Gp60,
while fluid-phase transport via vesicles or transport
through intercellular junctions, performed the remaining
transport [36, 40, 45]. This was found by in situ and
in vitro studies of albumin transport across lung micro-
vascular endothelium. Albumin binding to the cell
surface was almost completely inhibited by anti-Gp60
antibodies [40, 46].

Secreted protein, acidic and rich in cysteine (SPARC)
receptor
Secreted protein, acidic and rich in cysteine (SPARC)
also known as osteonectin or basement-membrane 40, is
an albumin binding protein located in the extracellular
matrix and is expressed by a variety of cells including
fibroblasts and endothelial cells and associated with
tissue growth and cell movement and/or proliferation
[47–53]. SPARC has been hypothesized to enhance
tumour uptake of an albumin-based nanoparticle system
of nab-paclitaxel (Abraxane®) though direct evidence
remains to be elucidated [54].

Gp18 and Gp30 receptor
The Gp18 and Gp30 are cell surface glycoproteins with
molecular weights of 18 and 30 kDa, respectively. Gp18
and Gp30 are expressed in endothelium cell mem-
branes, in particular in the liver [55] and peritoneal
macrophages [10, 56]. Whilst Gp60 serves to rescue
albumin from degradation, it has been shown that
Gp18 and Gp30 bind to modified albumin, for instance
gold-labelled albumin or formaldehyde-treated albumin
[27, 31, 34, 36, 42, 45]. Gp18 and Gp30 will then direct
the modified albumin to lysosomal degradation, pos-
sibly as a safety mechanism to remove old, damaged or
altered albumin [40, 42, 45]. This was demonstrated by
the study of Schnitzer et al. using a cell-based study of
rat epididymal fat pads by investigating binding, uptake
and degradation [42]. Albumin modified by formalde-
hyde, maleic anhydride or gold-attachment was shown
to bind Gp18 and Gp30 with higher affinity than native
albumin [42]. Modification of native albumin is thought
to occur through oxidation or non-enzymatic glycosyla-
tion as a means of protection or simply due to normal
aging or a disease-mediated reaction, for instance such
as oxidation from inflammation or hyperglycation in
diabetes [10, 40, 45, 57]. Hence, it appears that Gp18
and Gp30 are important for degradation of modified
albumin, as altered albumin not only binds to Gp18
and Gp30 but are also internalized and degraded
[42, 46]. Native albumin does not avidly bind to the
Gp18 and Gp30 receptors, but binds to the aforemen-
tioned Gp60 receptor, which is responsible for transcytosis
of albumin through endothelium [10]. Investigations of
albumin interactions with Gp18 and Gp30 receptors have
not been extensively explored, yet it has been shown that
modified albumin is degraded faster than native albumin
[10, 45] and that chemically modified bovine serum al-
bumin (BSA) shows 1000-fold higher affinity for Gp18
and Gp30 compared to native bovine serum albumin
[31]. In summary, these results suggest that the recep-
tors Gp18 and Gp30 are responsible for the degradation
of modified albumins and are, therefore, known as scav-
enger receptors.

Megalin/Cubilin receptor
Cubilin is a glycoprotein expressed in the apical endocy-
tic compartments of kidney proximal tubules, anchored
to the membrane at the N-terminal by a α-helix. Cubilin
lacks a transmembrane segment as well as a cytoplasmic
domain, therefore, it depends on another membrane
protein, Megalin, to facilitate endocytosis. Megalin has
an extracellular domain, a transmembrane segment as
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well as a cytoplasmic tail. The binding site for albumin
on Megalin, to our knowledge, has not been identified,
yet, the functional role of the Megalin/Cubilin complex
in reabsorption in the kidneys has been extensively
studied. Reabsorption of filtered proteins in the kidney
occurs by receptor-mediated endocytosis in the hy-
phenate if the word on two lines tubule. The receptors
responsible for mediating the reabsorption are Cubilin
and Megalin, both shown to bind albumin [29, 30]. As al-
bumin binds to Cubilin and Megalin, it is likely that the
Megalin/Cubilin complex is responsible for the receptor-
mediated endocytosis and rescuing of albumin from renal
excretion. Studies in Cubilin-deficient mice, as well as in
humans with a mutation in a Cubilin gene [58], show a
decrease in albumin uptake [59, 60]. The uptake of albu-
min in Megalin-, Cubilin- and double-knock out mice was
completely inhibited that indicates these receptors are
needed for the uptake of albumin [59, 60].
In a study by Weyer et al. using Megalin/Cubilin

deficient mice, 125I-labelled murine albumin was used
to investigate the uptake in the kidney and urinary
excretion of intact albumin as well as its fragments
by using size-exclusion chromatography [61]. For con-
trol mice all albumin was eluted as fragments, whereas
the Megalin/Cubilin-deficient mice showed a decreased
albumin uptake in the kidneys, as well as decreased
degradation, together with an increased excretion of
intact labelled albumin. An albumin conjugate, only
fluorescent when intracellularly degraded, was used to
visualize the degradation in proximal tubular cells after
intravenous injection. Proximal tubular cells in control
mice were positive, while there was an absence of fluor-
escence in Megalin/Cubilin deficient mice that indicated
an Megalin/Cubilin-mediated endocytosis mechanism also
plays a role in the intracellular degradation of albumin in
the proximal tubular cells [61]. Furthermore, a study by
Zhai et al. using a double labelling strategy of fluorescent
albumin and antibodies against either of the two receptors
Megalin or Cubilin, showed a correlation between Mega-
lin and Cubilin expression and the uptake of albumin that
supports a role in reabsorption of albumin [62].

Neonatal Fc receptor (FcRn)
A major role of the neonatal Fc receptor (FcRn) is in
placenta and proximal small intestine transport of IgG
from mother to fetus [63]. FcRn is a glycoprotein com-
prising of a MHC-class I-like heavy chain, consisting of
three extracellular domains (α1, α2, and α3), which is
non-covalently associated with a β2-microglobulin (β2m)
light chain. The light chain is necessary for the function
of FcRn [64]. The heavy chain is connected to a trans-
membrane element that continues into the cytoplasm.
It has been revealed that a lower amount of Immuno-

globulin G (IgG) antibodies were present in the blood of
β2m deficient mice and that immunization of the mice
showed decreased immune responses probably due to
degradation of IgG caused by a lack of diversion from
lysosomal degradation facilitated by FcRn [65–67]. This
indicates, therefore, that FcRn plays a role in adults as
well as in the neonatal state. FcRn is distributed in many
tissues including vascular endothelium as well as the
gut, lungs and kidney [63]. The first evidence for albu-
min/FcRn binding was co-elution of bovine albumin and
soluble human FcRn on a human IgG-coupled column
[28], also suggesting that both IgG and albumin could
simultaneously bind FcRn. Work by the same group re-
vealed that the serum concentration of albumin in FcRn
deficient mice was reduced compared to wild-type mice
and that FcRn-deficient mice had shortened half-life of al-
bumin [28].
Domain III was first suggested as the primary binding

site for FcRn [68, 69]. However, a study of FcRn binding
to recombinant domain III alone showed a ten-fold
weaker FcRn binding compared to non-recombinant
albumin [68, 70]. In the same study a docking model of
human FcRn in complex with human albumin revealed
FcRn interactions with two loops in the N-terminal of
domain I, in addition to the interactions in domain III
[68]. Site-directed mutagenesis of specific residues resid-
ing in the loops in domain I resulted in an altered affinity
to FcRn [71]. Co-crystallization studies of human FcRn in
complex with human albumin supports involvement of
both domain III and domain I in FcRn binding [72, 73].
In vitro studies have shown that albumin binding is
dependent on the presence of a conserved histidine
residue in FcRn (His166) [74, 75]. X-ray crystallography
data revealed a loop surrounding the His166 at acidic
pH. Hence, the theory of a pH-sensitive loop stabilized
by the protonated His166 was proposed [76, 77]. Fur-
thermore, the loops were shown to contain four con-
served tryptophan residues that resulted in reduced or
loss of binding to albumin when mutated [72, 78]. This
indicates that the binding of albumin is not only pH
dependent but also hydrophobic and that both domain
I and III are involved in FcRn interaction.
A cellular FcRn-mediated recycling pathway was first

proposed for IgG by Brambell in 1965 [79]. Later the
hypothesis that albumin recycling was carried out by
the same mechanism was proposed [80]. It is widely
accepted that FcRn is responsible for IgG half-life ex-
tension by a mechanism of increased binding at low
pH (<6.5) within the endosomes and recycling and
release into the extracellular space at physiological
pH. The first indications for FcRn involvement in al-
bumin recycling were revealed in 2003 by Chaudhury
et al. [28]. The authors confirmed the hypothesis of a
single receptor responsible for the half-life regulation
of albumin in the same manner as for IgG [81] by
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showing FcRn-albumin binding and a shortened life-
span of albumin in FcRn-deficient mice.

Albumin-based drug delivery strategies
The natural transport function, multiple ligand binding
sites, and cellular interactions provides rational for the
exploitation of albumin for drug delivery. The ability to
covalent and non-covalently attach drugs or expression
of albumin-drug fusions provides a range of design
options (Fig. 2) that has been taken into clinical trials
or on the market (Table 1).

Albumin-associated drugs
Albumin binds to endogenous ligands such as fatty
acids; however, it also interacts with exogenous ligands
such as warfarin, penicillin and diazepam. As the binding
of these drugs to albumin is reversible the albumin-drug
complex serves as a drug reservoir that can enhance the
drug biodistribution and bioavailability. Incorporation of
components that mimic endogenous albumin-binding
ligands, such as fatty acids, has been used to potentiate
albumin association and increase drug efficacy. Exam-
ples include Levemir® (Insulin detemir) and Victoza®
(Liraglutide) manufactured by Novo Nordisk for the
treatment of diabetes. Levemir® is a myristic acid modified
insulin analog. While for Victoza® a palmitic acid is
attached to a glucagon-like peptide-1 agonist. On injection
Fig. 2 Albumin-based drug delivery strategies. a Albumin fusion-based dru
1e7e + 3IOL). b Albumin associating drugs; upper left binding of paclitaxel
(insulin from PDB1ZNI, Myristic acid from PDB1H9Z), lower panel binding o
a drug to albumin via the available Cys34 (modified PDB 1e7e + 1I1E)
the fatty acid moiety binds to albumin and dissociates over
time and, therefore, enhances the bioavailability and distri-
bution. Levemir® has been shown to improve glycaemic
control and resulted in limited serious adverse drug
reactions that was evaluated in a large multi-national
follow up data study after 14 weeks in which the safety
and efficacy was assessed of 20,531 patients with type 1 or
2 diabetes [82]. Victoza® went through 8 phase III trials to
evaluate the efficacy and safety of Victoza® as a monother-
apy or as a combination therapy. Victoza® resulted in im-
provements in both hemoglobin A1c and fasting plasma
glucose (FPG) [83–89]. Benefits of those insulin analogues
by albumin-binding are an extended time of action profile
compared to conventional basal insulin such as neutral
protamine Hagedorn (NPH) that peak before 8 h of
injection [82].
Another category that utilises specific-binding to albu-

min is nanobodies. Ablynx has developed ATN-103,
now known as Ozoralizumab, which is a trivalent anti-
body having two peptides, one to interact with TNF-α,
and the other, albumin. In collaboration with Pfizer,
Ozoralizumab has completed Phase II studies in pa-
tients with rheumatoid arthritis [90]. Five different dos-
ing groups were compared to placebo treatment and
the highest dose of Ozoralizumab (80 mg every 4 weeks)
improved the ACR20 response compared to placebo in
week 16 [91].
gs, in light green (HSA) and in red (fusion peptide) (modified PDB
(from PDB1JFF), upper right binding of insulin detemir (Levemir®)
f the weakly associated warfarin (PDB1H9Z). c Covalent conjugation of



Table 1 A selection of albumin-based systems in clinical trials and marketed products

Attachment Name Disease Drug type Clinical status Company Ref

Non-covalent/reversible
association

Levemir® Diabetes type 1 and 2 Insulin detemir Marketed Novo Nordisk [123, 124]

Victoza® Diabetes type 2 GLP-1 Marketed Novo Nordisk [123]

Ozoralizumab Rheumatoid arthritis Antibody derivative Phase II completed Ablynx [90]

Covalent MTX-HSA Cancer and autoimmune
diseases

Methotrexate Phase II Access Pharmaceuticals Inc. [26, 119, 125, 126]

Aldoxorubicin Cancer Doxorubicin Phase I completed CytRx, Inc. [110, 127]

CJC-1134 Diabetes type 2 Exendin-4 Phase II ConjuChem [11, 128–131]

Genetic fusion Eperzan/Tanzeum Diabetes type 2 GLP-1 Marketed Glaxo Smith Kline [132–134]

N/A Hemophilia FVIIa Phase I completed CSL Behring GmbH [135–138]

N/A Hemophilia B rIX-FP Phase III completed CSL Behring GmbH [139]

Albuferon®/Zalbin/Jouleferon Hepatitis C INFalpha-2b Phase III completed,
Development ceased

Human Genome Sciences in
collaboration with Novartis

[11, 140]

Micro-/Nanoparticle Abraxane® Cancer Paclitaxel Marketed Celgene [141]

ABI-008 Cancer Docetaxel Phase I/II Celgene [95]

ABI-009 Cancer Rapamycin Phase I/II Celgene [96]

ABI-010 Cancer HSP90 Inhibitor Withdrawn before
enrollment

Celgene [97]

99mTc-Albures Diagnostic purpose Technetium-99 Marketed GE Healthcare
99mTc-Nanocoll Diagnostic purpose Technetium-99 Marketed GE Healthcare
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An alternative strategy to specific ligand binding is
non-specific association of albumin. Albumin has hydro-
phobic binding domains in which drugs such as warfarin
and diazepam can bind. Abraxane® is an established
albumin-based nanoparticle system produced by Celgene
and is used in the treatment of cancer. It is proposed to
be an albumin-bound nanoparticle of about 130 nm in
which the outer layer consists of albumin while the inner
core contains the water insoluble cytotoxic agent pacli-
taxel [92]. It has been shown to be less toxic to its free
drug counterpart paclitaxel and also exhibits higher
anti-tumour activity compared to free paclitaxel [92].
SPARC has been hypothesized to support tumour up-
take of Abraxane®. A preliminary study showing that
SPARC-positive cancer patients had a higher response
to an Abraxane®, supports the hypothesis that SPARC
mediated accumulation of albumin in tumours in-
creases the effectiveness of albumin-bound paclitaxel
[54]. In contrast, a study from 2014 on genetically
modified SPARC-deficient mice did not show any dif-
ference in uptake of Abraxane® into tumours [93]. The
uptake mechanism of Abraxane® in cells remains to be
elucidated, yet, Desai et al. have proposed that Gp60
and SPARC work in combination [54] suggesting
Abraxane® is transported across the endothelial barrier
by binding to Gp60 and subsequent caveolae-mediated
transcytosis into the tumour interstitium where SPARC
enhances the uptake of Abraxane into tumour cells
[54]. Celgene has a portfolio of albumin-based nanopar-
ticles for cancer treatment, which have been presented
in a report by Desai [94]. In this report, preclinical
studies of ABI-008 and ABI-009 are described. ABI-008
contains the active drug docetaxel. It has completed
phase I/II [95] and showed anti-tumour effects in pre-
clinical studies using xenograft studies of prostate and
colon tumours as reviewed by Desai [94]. Likewise,
ABI-009 in which the active drug is rapamycin proved
to be effective against colon and breast tumours in
xenograft studies and exhibited low toxicology and
good efficacy [94]. To our knowledge it has reached a
combined phase I and phase II study in the treatment
of non-muscle invasive bladder cancer [96]. ABI-010
contains a Hsp90 inhibitor 17-allylamino-17-demethoxy-
geldanamycin (17-AAG). Hsp90 is a chaperone that helps
to fold signaling proteins involved in cancer; hence, it is
an interesting candidate for cancer treatment. A phase I
trial was planned for ABI-010 in a combination treatment
with Abraxane® for different hematological malignancies
though it has been withdrawn prior to enrollment [97].
In addition to albumin-based nanoparticle therapeutics,

diagnostic nanoparticles have been developed. 99mTc-
Albures and 99mTc-Nanocoll are both albumin aggregated
particles containing the metastable nuclear isotope of
technetium-99 that have been used for various diagnostics
purposes in cancer and infectious diseases [98, 99]. In a
study of 59 patients with peripheral joint pain, 99mTc-nano-
colloid scintigraphy showed that the scan was able to detect
82 % of the clinically assessed joint disease in a group with
arthralgia [100]. In a study of rheumatoid arthritis compar-
ing clinical assessment with 99mTc-nanocolloid scans, 79 %
of clinically positive joints were detected by the scan [101].

Albumin-fusions
An elegant approach to combine protein-based drugs
with albumin, is genetically fusion to the N- or C-terminal
or both ends of the albumin. The protein gene is con-
nected to that of albumin and expressed in a suitable
expression host, typically yeast, resulting in a single fused
protein. It is, however, necessary that the linker and fused
moiety do not interfere with the folding of albumin so it
retains its functionality and long half-life.
The product albiglutide (Eperzan®/Tanzeum®) manufac-

tured by GlaxoSmithKline for the treatment of type II dia-
betes, is a GLP-1 receptor agonist developed by fusion of
two human GLP-1 repeats to recombinant human albumin
[102, 103]. In eight phase III studies also known as the Har-
mony program, the efficacy and safety profile of albiglutide
has been studied. A detailed review by Woodward et al.
shows that weekly dosing of albiglutide showed lowered
glycated hemoglobin, reductions in fasting plasma glucose
and weight loss in patients with type II diabetes [104].
Albuferon®, also known as albinterferon, is an inter-

feron α-2b fused to albumin that went into phase III
studies for treatment of Hepatitis infections. In the
phase IIb study of a combination therapy of ribavirin
and albinterferon to treat hepatitis C virus, patients
given albinterferon of 900 μg and 1200 μg every 2 weeks
showed the same sustained virologic response as the
standard treatment of PEGylated interferon α-2a (Pegasys®)
180 μg every week [105]. In the phase III studies albinter-
feron was equal to standard treatment of PEGylated
interferon α-2a though treatment discontinuation due
to adverse effects which were 4.1 %, 10.4 % and 10.0 % for
PEGylated interferon α-2a, albinterferon 1200 μg and
albinterferon 900 μg respectively [106, 107]. As of October
2010 FDA issued a complete response letter and Novartis
and Human Genome Sciences, Inc. decided to stop fur-
ther development of the drug [108].

Covalent attached drugs
A standard approach is chemical conjugation of the drug
to either lysines, tyrosines, or the free SH-group on the
cys34. The free thiol group on cys34 has been widely
used, for instance by reacting with a maleimide linker
from prodrugs, which have been intravenously injected
[109, 110]. Covalent attachment of drugs, however, re-
quires a release mechanism from albumin. In the group
of Kratz, this was solved by introducing an acid sensitive



Larsen et al. Molecular and Cellular Therapies  (2016) 4:3 Page 8 of 12
hydrazone linker that is thought to be cleaved upon
delivery at tumour sites due to an acidic extracellular
environment or inside endosomes or lysosomes after
cellular uptake [11, 109]. The group of Kratz modified
doxorubicin with maleimides and demonstrated in situ
conjugation with cys34 of endogenous albumin after
intravenous injection. This is based on 70 % of the
endogenous pool of albumin contributing to free thiols.
In vivo studies performed by the same group revealed
that doxorubicin maleimide derivatives were superior to
free doxorubicin with regards to anti-tumour efficacy
and toxicity in three different animal models (RENCA,
MDA-MB 435 and MCF-7) [111, 112]. This work by the
group of Kratz was taken further and Aldoxorubicin
(also known as INNO-206 or DOXO-EMCH) produced
by CytRx is a doxorubicin conjugate containing an acid-
sensitive linker. Upon administration the linker is
thought to bind to circulating albumin and is, therefore,
transported to the tumour site where the acidic environ-
ment will cleave the linker and release doxorubicin to
exert its action. Aldoxorubicin was shown to be superior
to doxorubicin in a Phase IIb study involving 126 pa-
tients for treatment of soft tissue sarcoma [113]. CytRx
has initiated a phase III global trial of their anti-cancer
drug Aldoxorubicin for soft tissue sarcoma, and phase II
studies and below are ongoing for treatment of small cell
lung cancer, HIV-related Kaposi’s sarcoma and late-stage
glioblastoma [114]. CytRx are also studying Aldoxorubi-
cin combination treatments, for instance Ifosfamide for
patients with soft tissue sarcoma and Gemcitabine to
treat metastatic solid tumours [114].
Lau et al. used maleimide conjugation to link small

interfering RNA (siRNA) to endogenous albumin. Using
SMCC, a thiol-reactive group was incorporated termin-
ally in the siRNA able to react to the free cys34 on
circulating albumin [115]. Ex vivo results indicated a fast
reaction of maleimide-activated siRNA with cys34 on
albumin, and after 1 h maximal conjugation was reached.
Furthermore, in vivo work showed that siRNA-albumin
was still detectable after 4 h, whilst non-activated siRNA
was not after 30 min [115]. In vivo silencing of mice
treated with activated siRNA (1 mg/kg) resulted in signifi-
cantly reduced levels of the myocardium target gene IGF-
IR mRNA compared to vehicle treated or nonactivated
siRNA [115]. Hence, siRNA-albumin conjugates may be
useful for gene silencing in tissues.
Ehrlich et al. have conjugated an Y2R-peptide to albumin

to enhance its circulation time [116]. The Y2R-peptide is a
potential obesity drug as it acts on the Y2 receptor located in
the hypothalamus and peripheral nervous system and is,
therefore, thought to reduce appetite. The Y2R-peptide was
modified using different linkers (succinimidyl 4-[N-maleimi-
domethyl]cyclohexane-1-carboxylate (SMCC), 6-maleimido-
hexanoic acid N-hydroxysuccinimide ester (MHS), and
N-[γ-maleimidobutyryloxy]-sulfosuccinimide ester (GMBS)
before attachment to albumin. One of the most active albu-
min conjugates in vitro (HSA-MH-Y2R) showed a significant
reduction in food uptake after 24 h of 37 % [116].
Methotrexate human serum albumin (MTX-HSA) is a

covalent attached methotrexate to lysine residues in
albumin. In a study by Stehle et al. it was found that the
drug loading ratio to albumin affected the tumour tar-
geting properties in a rat tumour model [117]. Though,
it was thought that more MTX attached to HSA would
increase the therapeutic effect, it was found that a low
molecular ratio of 1:1 resulted in the highest tumour
targeting properties such as high tumour uptake, long
half-life and low liver uptake rates [117]. Phase I studies
of MTX-HSA in cancer patients applied at a ratio of 1:1.3
did not result in any severe side-effects and was in general
well tolerated by the patients, therefore, showing a good
toxicology profile [118]. MTX-HSA was used in combin-
ation with cisplatin in treatment of patients with bladder
cancer in a phase II study. One patient showed a partial
response and another showed complete response out of
seven patients resulting in 27 % response rate [119]. To
our knowledge, MTX-HSA has not been taken further for
clinical studies.

Conclusion and future perspectives
Exploitation of the natural properties of ligand binding
and transport have been utilised for albumin-based drug
delivery, with a focus on drug half-life extension. A drug
construct design incorporating binding ligands is a simple,
but elegant, approach used for commercial reversible
binding drugs Levemir® and Victoza®. A more elaborate
non-reversible strategy is development of albumin cova-
lent conjugated drugs. The availability of a free thiol at
cys34 in domain I allows site-specific conjugation distant
from the main FcRn binding site in domain III and Hy-
phenate if the word is on two lines binding pockets, a
chemoselectivity not possible when conjugation is per-
formed to the multiple lysines distributed throughout al-
bumin. Thiol-maleimide conjugation is the dominant
method employed to attach drugs; however, the susceptibil-
ity of the maleimide bond to serum breakdown in the
bloodstream due to thiol exchange reactions may require
alternative chemistries [120]. Pre-hydrolysis of the
maleimide-conjugate prior to thiol exposure to create a
stable open-ring structure is a promising approach [121].
The application of albumin fusions containing a therapeutic
protein is a strategy that circumvents the requirement for
covalent conjugation. Eperzan®/Tanzeum® is now on the
market, with the number of albumin fusion products ex-
pected to rise. The application of engineered recombinant
albumins with different affinity to FcRn shown in non-
human primates to tune the drug pharmacokinetic pro-
file is an exciting next-generation approach [122].
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Interaction with a range of cellular receptors such as
Gp18, Gp30 and Gp60 may potentiate cellular entry for
intracellular drug delivery applications. A greater under-
standing of the intracellular pathway of albumin, how-
ever, is needed in order to optimise albumin-based
intracellular drug delivery approaches.
Albumins inherent transport properties and cellular

receptor engagement promotes albumin as a natural
molecular medicine, greater control of these properties
is key to further harness nature to cure disease.
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