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microRNA therapies in cancer
Sacha I Rothschild
Abstract

MicroRNAs (miRNAs or miRs) are a family of small non-coding RNA species that have been implicated in the control
of many fundamental cellular and physiological processes such as cellular differentiation, proliferation, apoptosis and
stem cell maintenance. miRNAs regulate gene expression by the sequence-selective targeting of mRNAs, leading to
translational repression or mRNA degradation. Some microRNAs have been categorized as “oncomiRs” as opposed
to “tumor suppressor miRs” Modulating the miRNA activities may provide exciting opportunities for cancer therapy.
This review highlights the latest discovery of miRNAs involved in carcinogenesis as well as the potential applications
of miRNA regulations in cancer treatment. Several studies have demonstrated the feasibility of restoring tumor
suppressive miRNAs and targeting oncogenic miRNAs for cancer therapy using in vivo model systems.
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Introduction
In 1993, Lee and coworkers described that a small non-
coding RNA was able to regulate the expression and
function of another protein-coding RNA [1]. This
change in paradigms has made a profound impact in our
current understanding of gene regulation. miRNAs are
usually 18–25 nucleotides long and highly conserved
during evolution (reviewed in [2]) miRNA genes are
generally transcribed by RNA polymerase II into long
primary transcripts, up to several kilobases (pri-miRNA)
[3]. These are subsequently processed in the nucleus by
a microprocessor complex, which contains the RNase III
enzyme Drosha [4] and DGCR8 [5] to become the so-
called pre-miR (around 70 nucleotides long). These pre-
cursors are exported by exportin 5 and a RanGTP [6,7]
from the nucleus to the cytoplasm where they are bound
to the RNase III enzyme Dicer and the RNA-induced
silencing complex (RISC) [8]. RISC is composed of the
transactivation-responsive RNA-binding protein (TRBP)
and Argonaute 2 (Ago2) [9,10]. Ago2 cleaves the pre-
miRNA 12 nucleotides from its 3’ end and then the
Dicer cleaves the Ago2-cleaved precursor miRNA into
the double-stranded miRNA [11]. While the active ma-
ture strand is retained in RISC, the passenger strand is
removed and degraded [12] miRNAs mainly bind to
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the 3’ untranslated region (UTR) of their target mRNAs.
However, recent studies have reported that miRNAs
also bind to 5’UTR [13], or open reading frame (ORF)
[14] of the target mRNA. By binding to their target
mRNA, miRNAs regulate the translation of proteins
from mRNA or degrade the mRNA itself [9-11]. De-
pending on the degree of homology to their 3’UTR tar-
get sequence, miRNAs induce translational repression or
degradation of mRNAs. miRNAs modulate gene expres-
sion impacting all cell functions, including apoptosis,
proliferation, cell cycle, differentiation, stem cell main-
tenance and metabolism [15]. It is estimated that more
than 1000 miRNAs are transcribed and that 30% of the
human genome is under miRNA regulation, one miRNA
being able to modulate post-transcriptionally hundreds
of downstream genes.
MicroRNAs and cancer
More than half of the miRNAs genes are located in
cancer-associated genomic regions or in fragile sites.
Specific miRNA signatures have been associated with
distinct subsets of solid tumors and hematological ma-
lignancies [15] miRNAs can act as tumor suppressors
when their function loss can initiate or contribute to the
malignant transformation of a normal cell. The loss of
function of a miRNA could be due to several mecha-
nisms, including genomic deletion, mutation, epigenetic
silencing, and/or miRNA processing alterations [16-19].
On the other hand, miRNAs can act as oncogenic
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microRNAs by targeting mRNAs encoding tumor sup-
pressor proteins.
The let-7 family of miRNAs is a typical tumor suppressor

and is therefore downregulated in many tumors, including
lung and breast cancer [20,21]. Many of the let-7 family
members are located in fragile genomic areas associated
with lung, breast, and cervical cancer [22]. Furthermore,
let-7 family members functionally inhibit the mRNAs
of well-characterized oncogenes, such as RAS [23,24],
HMGA2 [25], and c-Myc [26]. The miR-29 family com-
prises three isoforms arranged in two clusters: miR-29b-1/
miR-29a in chromosome 7q32 and miR-29b-2/miR-29c in
chromosome 1q23. miR-29 family members have been
shown to b downregulated in chronic lymphatic leukemia
(CLL), acute myeloid leukemia (AML), lung cancer, breast
cancer, and cholangiocarcinoma [17,20,21,27,28].
miR-155 was one of the first described oncogenic miR-

NAs [29,30] and it is highly expressed in a variety of
tumors [17,20,21,28-31]. The miR-155 gene is located
in chromosome 21q23 embedded in a host noncoding
RNA named the B cell integration cluster (BIC) [32].
BIC is known to cooperate with c-Myc in oncogenesis.
Another widely expressed miRNA in hematopoietic and
solid tumors is miRNA-21 [17,28,31,33-35] miR-21 tar-
gets several tumor suppressor genes such as phosphatase
and tensin homolog (PTEN) [34], programmed cell
death 4 (PDCD4) [36], and tropomyosin 1 (TPM1) [37].
The miR-17-92 cluster (miR-17, miR-18a, miR-19a, miR-
20a, miR-19b-1, miR-92-1) is located at 13q31.3 in a re-
gion that is frequently amplified in follicular lymphoma
and diffuse large B cell lymphoma [38]. Members of
the miR-17-92 cluster are highly expressed in a variety
of solid tumors and hematological malignancies [39],
Interestingly, the miR-17-92 cluster is transactivated by
c-Myc, a frequently activated oncogene in cancer [40].
Recently, miRNAs have been found to foster tumor

progression by the mediation of inflammation processes
through regulation of components of the innate immune
system. Two recent studies described the miRNAs miR-21
and miR-29a to serve as ligands for Toll-like receptor
(TLR) activation. Fabbri et al. showed that tumor-
originating extracellular miRNA could bind to murine
TLR7 and human TLR8 to cause a proinflammatory re-
sponse leading to tumor progression both in vitro and
in vivo [41]. In a separate study, Lehmann et al. showed
that extracellular let-7 could activate TLR7 to induce neu-
rodegeneration [42]. These off-target effects might be over-
come by chemical modifications and improved delivery
systems as discussed in one of the subsequent paragraphs.

Targeting microRNAs in cancer
General aspects of miRNA therapeutics
Every miRNA has multiple target sites in different genes
(on average about 500 for each miRNA family). Recip-
rocally, about two third of all mRNAs have one or more
evolutionarily conserved sequences that are predicted to
interact with miRNAs [43-46]. The rationale for using
miRNAs as therapeutic agents is based on the two follow-
ing criteria. (1) miRNA expression is dysregulated in
cancer compared to normal tissues and (2) the cancer
phenotype can be changed by targeting miRNA expres-
sion [16,20,21,24,28,47-50]. Compared to other strategies,
miRNA-based therapeutics have several advantages, as for
example the fact that miRNAs as therapeutic agents have
the ability to target multiple genes, frequently in the con-
text of a network. The challenges for microRNA-based are
the same as the challenges for small interfering RNA thera-
peutics and include issues of delivery, potential off-target
effects and safety. One of the major obstacles for the use of
miRNA therapeutics is the tissue-specific delivery [51,52].
Moreover, the fact that one miRNA targets multiple genes
is also a drawback as the potential off-target effects may
cause toxic phenotypes [51,53]. The fact that some bio-
logical functions of miRNAs may be partially redundant,
or cell-type dependent, is another relevant issue in the
development of miRNA therapeutics [54]. Although suc-
cessful delivery is an obstacle to effective miRNA-based
therapeutics, new findings from recent trials and the rapid
advances in systemic drug delivery systems provide an op-
timistic perspective on the progress in this field [55].
In general, miRNA therapeutic approaches can be di-

vided into two different categories: (1) miRNA inhibition
therapy when the target miRNA is overexpressed and (2)
miRNA replacement therapy when the miRNA is re-
pressed. Therapeutic targeting of microRNAs can be ac-
complished either by direct inhibition or replacement of
miRNAs or by targeting specific genes and therefore
regulating the expression of specific miRNAs. For this
purpose small-interfering RNAs (siRNAs) and genetic-
ally encoded expression vectors encoding small hairpin
RNAs (shRNAs) are used [56].

microRNA modifications
There are different hurdles to develop miRNA-based
treatment approaches. One is that RNAs in general have
low stability in vivo. Thus, miRNA introduced into mice
via the tail vein is cleared from the circulatory system
within 30 minutes [57]. Unmodified RNAs undergo deg-
radation by RNases and then rapid renal excretion [58].
Therefore, the plasma half-life of RNAs needs to be in-
creased for clinical use of miRNA-based therapeutic ap-
proaches. An improvement could be reached by higher
miRNA stability or by protection from RNases. By using
chemically modified oligonucleotides the stability of the
antisense sequences is augmented [59,60]. In the follow-
ing established chemical modifications are listed: locked
nucleic acid (LNA) oligonucleotides [61], phosphoro-
thioate containing oligonucleotides [62], 2’–O-methyl-
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(2’–O-Me) or 2’–O-methoxyethyl-oligonucleotides (2’–
O-MOE) [63], peptide nucleic acids (PNA) [64], fluorine
derivatives (FANA and 2’-F) and other chemical modifi-
cations [65]. LNAs are oligonucleotides complementary
to the sequence of the targeted mature miRNA, but bio-
chemically modified to reduce the risk of degradation by
cellular RNases. LNAs have an extra bridge connecting
the 2’ oxygen and the 4’ carbon. PNAs are uncharged ol-
igonucleotides analogs in which the sugar-phosphate
backbone is replaced by an achiral structure consisting
of N-(2-aminoethyl)-glycine units [66-70]. These mole-
cules form a double helix by hybridization with comple-
mentary DNA and RNA [66,67] PNAs have a higher
affinity to RNA than to DNA and are resistant to
DNases and proteases [67]. This technology has been in-
vestigated in different studies [70,71] PNA targeting
miR-221 has shown to specifically interact with miR-221
expressed in aggressive breast cancer cell lines [72]
PNA-anti-miR-21 has recently been shown to reduce
breast cancer metastasis in an animal model [73]. It is
well established that cancers are often driven by deregu-
lation of various miRNAs or families of miRNAs. There-
fore, methods to silence multiple miRNAs have been
investigated. Tiny 8-mer LNAs with a phosphorothioate
backbone to enhance stability have been developed [74].

miRNA delivery systems
Beside chemical modification of miRNAs to avoid rapid
degradation and excretion, the development of improved
delivery systems leads to enhanced stability and more
precise delivery of miRNAs. miRNAs can be conjugated
to a cholesterol moiety, increasing stability in the
circulation and facilitating cell entry [75]. A further
mechanism of protection is to enclose miRNA mimics
or LNAs into nanoparticles to form micelle-like struc-
tures. Liposome-nanoparticles are phospholipid struc-
tures that are capable of incorporating various types of
nucleic acids and charged small molecules, such as
microRNAs, siRNAs, shRNAs, plasmid DNA, and pro-
tein, within the aqueous core of the liposome [76]. The
major drawback of liposomes are nonspecific uptake
and induction of immune response [77]. Polycationic
liposome-hyaluronic acid (LPH) nanoparticles have also
been used as miRNA carriers [78]. Using LPH particles
as a carrier for miR-34a significantly reduced lung me-
tastases in a murine melanoma model [76]. It has been
shown that systemic administration of positively charged
lipid nanoparticles in vivo is toxic and stimulates inflam-
matory response by elevating both Th1 and Th17 cyto-
kines and interferon responsive genes [79]. Clearly, a
complete understanding of the best liposomal design
for delivery of therapeutic substances is still evolving.
It is possible that with nucleic acid delivery the use of
a neutral lipid, such as 1,2-Dioleoyl-sn-glycero-3-
phosphatidylcholine (DOPC) will have several advan-
tages [80]. Other delivery systems used for microRNAs
are polyethylenimine (PEI)-based systems [81-83], den-
drimers [84-86], poly(lactide-co-glycolide) (PLGA) parti-
cles [87,88], protamine [89], atelocollagen [90-92], as
well as inorganic materials (e.g. gold [93,94] and silica-
based nanoparticles [95]).
Another hurdle in the design and application of miRNA

therapeutics is to ensure tumor-specific delivery. Due to
the fact that most miRNAs target many different mRNAs,
off-target effects are a substantial problem. Targeted deliv-
ery to specific tissues can be achieved by binding tumor-
specific ligands to nanoparticles, which can be directed to
tumor cells via active or passive targeting. Active targeting
is achieved by conjugation with different compounds that
have a specific affinity to tumors. As an example, cancer
cell receptors (EGFR, HER-2) or hyaluronic acid could be
used [96-98]. Hyaluronic acid is a polysaccharide that
binds to the cancer stem cell marker CD44, which is over-
expressed in various tumor cells [99].

miRNA inhibition therapy
Oncogenic microRNAs could be therapeutically targeted
by repression and therefore inhibition of the interaction
between miRNA and mRNA. A simple method to inhibit
miRNAs is the use of oligonucleotides complementary
to the mature miRNA (antagomiRs). These oligonucleo-
tides disrupt the miRISC complex and therefore prevent
the degradation of the mRNA which can then be trans-
lated. microRNA sponges have been developed to inhibit
the activity of miRNA families sharing a common seed
sequence. miRNA sponges work with multiple comple-
mentary 3’UTR mRNA sites of a specific miRNA and
saturate the miRISC complex repressing the activity to-
ward natural mRNA [100]. A major drawback of miRNA
sponges is the limited homogeneity of transcripts ex-
pression and therefore miRNA sponges could lead to
serious side effects [101]. Another approach to more
specifically inhibit the miRNA function is the use of
miRNA masks which are complementary to the binding
sites in the 3’UTR of the target mRNA [15]. This
method allows a more specific inhibition of the mRNA
targeted by a specific miRNA.

microRNA replacement therapy
miRNA replacement therapy aims at substitution of
tumor suppressive miRNAs expressed at lower levels by
using oligonucleotide mimics containing the same se-
quence as the mature endogenous miRNA. As double
stranded miRNA mimics have a much higher potency as
single stranded miRNA mimics they are most often used
[102]. The guide strand contains a sequence identical to
the mature miRNA and the passenger strand sequence
is complementary to the mature miRNA. Additionally to
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miRNA mimics containing the same sequence as the en-
dogenous miRNA, synthetic miRNA precursor mimics
with longer sequences are used [103].

MicroRNA therapeutics
Using a luciferase reporter assay to screen small molecule
libraries for a compound that could inhibit the expression
of specific oncogenic miRNAs has recently been successful.

OncomiRs
The expression of microRNA miR-122 is confined to the
liver, where it constitutes 70% of the total miRNA popu-
lation [3]. Within the liver, miR-122 has been implicated
in cholesterol and lipid metabolism, and was identified
as a regulator for systematic iron homeostasis [7,8].
Moreover, miR-122 has also been demonstrated to be
necessary for the replication and infectious production
of hepatitis C virus (HCV). Binding of miR-122 to the
5′ noncoding region of the HCV genome upregulates
expression, causing accumulation of viral RNA in liver
cells [9]. HCV infection is one of the major causes of
liver disease worldwide, including cirrhosis and hepato-
cellular carcinoma [9]. The essential interaction between
miR-122 and HCV suggests that miR-122 could be an
excellent therapeutic target for the treatment of HCV in-
fections. Anti-miR-122 is the only miRNA-based treat-
ment tested in human beings so far. In 2010, data from
a drug trial of an intravenously delivered anti-miR-122
LNA in chimpanzees were reported [104]. Anti-miR-122
LNA given to chronically infected chimpanzees once a
week for 12 weeks led to a reduction in viral load in the
serum and the liver. Based on these results, a phase 1
trial in 77 healthy volunteers demonstrated the safety of
anti-miR-122 application in humans. In the subsequent
phase 2 trial the safety and efficacy of the treatment was
confirmed [105]. The discovery of small molecule inhibi-
tors of miR-122 function demonstrates a novel approach
to inhibit HCV replication in liver cells [10]. A very re-
cent publication describes the development of an assay
for the discovery of small molecule regulators of miR-
122, and ultimately HCV therapeutics [106].
miR-21 is an oncogene and therefore frequently highly

expressed in solid tumors and hematological malignan-
cies [21,107-116]. Inhibition of miR-21 resulted in
reduced cell proliferation accompanied by increased
apoptosis in breast and glioblastoma cell lines [117,118].
Again by performing luciferase reporter assay an inhibi-
tor of miR-21 has been identified. This agent was able to
inhibit miR-21 expression and elicit antitumoral effects
[119]. miR-21 transfection leads to the downregulation
of PTEN and increased signaling through the PI3K-AKT
pathway [34].
Members of the miRNA-29 family (miR-29a, miR-29b,

and miR-29c) are known to be highly expressed in normal
tissues and downregulated in different types of cancer,
including neuroblastoma, sarcoma, glioma, high-risk chro-
nic lymphatic leukemia (CLL), invasive breast cancer,
cholangiocarcinoma and lung cancer.(35–40) miR-29a has
been shown to reduce invasiveness and proliferation of
human carcinoma cell lines.(41) The miR-29 family mem-
bers also target DNA methyltransferases (DNMT3A and
DNMT3B), and can thereby restore patterns of DNA
methylation and expression of silenced tumor suppressor
genes.(31) We recently showed that inhibition of endogen-
ous miR-29b by stable transduction of a lentiviral vector
containing an antisense nucleotide in human lung cancer
cells caused increase of inhibitor of differentiation 1 (ID1)
and Matrix-Metalloproteinase-9 (MMP9), and enhanced
matrigel invasion [120]. On the contrary side, stable over-
expression of miR-29b caused decrease of ID1 and MMP9
and significantly decreased invasion [120]. In a further
study we observed a reciprocal association between miR-
381 and ID1 in lung cancer cell lines and primary adeno-
carcinomas [121]. Our results also provide first evidence
that ectopic expression of miR-381 reduced ID1 mRNA
and protein levels, and significantly decreased lung cancer
cell migration and invasion.(reviewed in [122]).
The use of antagomiRs against miR-10b in an animal

model of breast tumor-bearing mice was associated with
reduced metastasis, both in vitro and in vivo [123]. The
silencing of miR-10b with antagomiRs significantly de-
crease dmiR-10b levels and increased the levels of a
functionally important miR-10b target, Hoxd10. The use
of this antagomiRs in mice bearing highly metastatic
breast cancer cells did not reduce primary mammary
tumor growth but markedly suppressed the formation of
lung metastases. The therapy was well tolerated by mice.
miR-155 was found to be overexpressed in different

types of solid cancers as well as lymphomas [20,124-133]
miR-155 is a negative prognostic factor in pancreatic and
lung cancer patients [20,131]. In malignant glioma the
downregulation of the GABA-A receptor was shown to
correlate with the grade of the tumor. The knockdown of
miR-155 involves the re-expression of GABRA 1 protein
in vivo and therefore controlling proliferation and signal-
ing pathways regulated by the GABA-A receptor [134].
The inhibition of the MYC-driven miR-9 using a

miRNA sponge could reduce the development of lung
metastases in a breast cancer mouse model [135]. On
the other hand, the inhibition of the tumor suppressive
miR-31 with sponge miRNAs in a breast cancer model
induced the development of lung metastases [136].

Tumor suppressor miRNAs
The let-7 family is one of the best described tumor suppres-
sor miRNAs [24,137-141] and is frequently downregulated
in tumor tissue [142]. In xenograft models, tumor burden
was reduced by intratumoral delivery of let-7b [143]. By
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intranasal delivery of let-7a using lentivirus in a lung cancer
xenograft model the tumor burden was significantly re-
duced [57]. One emerging concept for miRNA regulation is
based on functional polymorphisms in the target mRNA
3’UTR interfering with miRNA binding and function. Tar-
get polymorphisms in the 3’UTR of KRAS interfere with
the function of let-7 and are associated with outcomes in
breast and lung cancer [144,145].
The miR-34 family has been reported as direct p53 tran-

scriptional target. Overexpression of miR-34 family mem-
ber induces apoptosis and cell cycle arrest [146,147]. The
correlation between downregulation of miR-34 and vari-
ous tumor types has been demonstrated [148-151] miR-34
incorporated in a lipid-based particle was able to block
tumor growth in a mouse model of non-small cell lung
cancer [57] miR-34a accumulated in the tumor tissue,
resulting in downregulation of its direct targets. Similar re-
sults were obtained in a second study of non-small cell
lung cancer with the delivery of miR-34a or let-7 mimics
[57]. Based on these results, miR-34 as a liposomal miR-
34 mimic (MRX34, Mirna Therapeutics Inc.) is investi-
gated in clinical trials [152].
miR-16 conjugated to atelocollagen has been shown to

reduce bone metastases in a xenografts model of pros-
tate cancer [153]. Atelocollagen is a collagen solubilized
by protease with similar physical properties to those of
natural, insolubilized collagen [92].
Conclusions
microRNAs represent critical regulators of tumor cell
differentiation, proliferation, cell cycle progression, inva-
sion and metastasis. Based on microRNA arrays various
miRNAs have been described as oncogenes or tumor
suppressors and many of them are used for diagnosis
and as prognostic or predictive tools [122].
Emerging evidence suggests that inhibition of overex-

pressed oncogenic miRNAs or substitution of tumor
suppressive miRNAs could become a novel treatment
strategy in cancer therapy. The optimization of the sta-
bility of miRNAs, the improvement in delivery systems
and targeted drug delivery as well as the understanding
and control of off-target effects of miRNA therapeutics
are challenges for the future development.
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