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Adoptive T-cell therapy for Leukemia
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Abstract

Allogeneic stem cell transplantation (alloSCT) is the most robust form of adoptive cellular therapy (ACT) and has
been tremendously effective in the treatment of leukemia. It is one of the original forms of cancer immunotherapy
and illustrates that lymphocytes can specifically recognize and eliminate aberrant, malignant cells. However, because of
the high morbidity and mortality that is associated with alloSCT including graft-versus-host disease (GvHD), refining the
anti-leukemia immunity of alloSCT to target distinct antigens that mediate the graft-versus-leukemia (GvL) effect could
transform our approach to treating leukemia, and possibly other hematologic malignancies. Over the past few decades,
many leukemia antigens have been discovered that can separate malignant cells from normal host cells and render
them vulnerable targets. In concert, the field of T-cell engineering has matured to enable transfer of ectopic high-affinity
antigen receptors into host or donor cells with greater efficiency and potency. Many preclinical studies have
demonstrated that engineered and conventional T-cells can mediate lysis and eradication of leukemia via one or
more leukemia antigen targets. This evidence now serves as a foundation for clinical trials that aim to cure leukemia
using T-cells. The recent clinical success of anti-CD19 chimeric antigen receptor (CAR) cells for treating patients with
acute lymphoblastic leukemia and chronic lymphocytic leukemia displays the potential of this new therapeutic
modality. In this review, we discuss some of the most promising leukemia antigens and the novel strategies
that have been implemented for adoptive cellular immunotherapy of lymphoid and myeloid leukemias. It is
important to summarize the data for ACT of leukemia for physicians in-training and in practice and for investigators
who work in this and related fields as there are recent discoveries already being translated to the patient setting and
numerous accruing clinical trials. We primarily focus on ACT that has been used in the clinical setting or that is currently
undergoing preclinical testing with a foreseeable clinical endpoint.
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Introduction
T-lymphocytes are critical cells of the immune system
that eliminate both infectious pathogens and abnormal,
malignant cells. The importance of T-cells in the elimin-
ation of leukemia was first supported by trials comparing
T-cell replete versus T-cell depleted allogeneic stem cell
transplant (alloSCT), where a higher incidence of disease
relapse was observed for recipients of T-cell depleted
transplants, but with the advantage of a lower incidence
of graft-versus-host disease (GvHD) [1-6]. The data for
this effect are strongest in chronic myeloid leukemia
(CML), though evidence for T-lymphocyte targeting of
malignant cells within other leukemia diagnoses – acute
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myeloid leukemia (AML), chronic lymphocytic leukemia
(CLL), and acute lymphoblastic leukemia (ALL) − also
comes from trials demonstrating success with donor
lymphocyte infusion (DLI) for relapsed leukemia after
alloSCT [7-11]. DLI is a treatment comprised of unse-
lected, polyclonal donor lymphocytes and is frequently
administered in the absence of preparative conditioning.
It provides the most direct proof of the potent graft-
versus-leukemia (GvL) effect mediated by allogeneic
T-cells, but GvHD complicates DLI in up to 60% of patients
[12]. Thus, adoptive cellular therapy (ACT) has arisen
from the desire to isolate and enhance the GvL effect that
accounts for the efficacy of alloSCT and DLI while minim-
izing GvHD toxicity, which causes significant morbidity
and mortality. ACT is a type of cancer treatment that in-
volves infusing patients with large numbers of autologous
or allogeneic lymphocytes that have undergone ex vivo
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selection and modification. The goal of ACT for leukemia
is to administer T-cells that target leukemia antigens with
minimal impact on normal tissues.
It is important to highlight that GvL and GvHD both

refer to the allogeneic setting where donor T-cells are
presumed to recognize both tumor-associated antigens
(nonpolymorphic self antigens that are overexpressed
in malignant cells), minor histocompatibility antigens
(polymorphic host antigens that are foreign to the donor)
and tumor-specific antigens (antigens that are mutated or
solely expressed by the tumor cell) [13,14]. Graft-versus-
tumor effects are not exclusive to allogeneic T-cells, how-
ever, and Rosenberg et al. have pioneered efforts to use a
patient’s autologous T-cells to combat melanoma, and
more recently carcinoma, using several strategies with
much success [15,16]. With regard to hematologic disease,
using ACT is a natural extension of standard of care
approaches that are currently employed to treat leukemia,
lymphoma, and myeloma − specifically autologous and
alloSCT. Limiting this approach, though, are a lack of
known tumor antigens and mechanisms of central and
peripheral T-cell tolerance whereby T-cells with high af-
finity for self-antigens are deleted in the thymus or
are rendered hyporesponsive through various mecha-
nisms that can be exploited by the immunosuppressive
tumor microenvironment [17]. Numerous high throughput
methodologies are being explored for the identification of
novel tumor antigens, and, to bypass T-cell tolerance, re-
search is now capitalizing on advances made in synthetic
biology and basic immunology to engineer and redirect
T-cells to eliminate tumor cells. The purpose of this re-
view is to provide an overview of various strategies being
developed to improve the adoptive transfer of T-cells
for immunotherapy of leukemia, with a focus on the
approaches being tested in clinical trials.

Review
Leukemia antigens
Arguably, the most important aspect of ACT is the tar-
geted antigen, and this is becoming increasingly true as
methods to enhance the T-cell receptor (TCR) affinity
and to lower T-cell activation thresholds are incorpo-
rated. These improvements narrow the therapeutic win-
dow for ACT and necessitate careful antigen selection.
Many, but not all, tumor antigens arise from intracel-
lular proteins that must be processed and presented by a
cell’s major histocompatibility complex (MHC) in order to
trigger TCR-binding and provoke an immune response. In
contrast, the implementation of chimeric antigen recep-
tors (CARs) has now broadened the pool of potential anti-
gens to include extracellular, non-MHC bound molecules.
The ideal tumor antigen is expressed on all malignant cells
including cancer stem cells, demonstrates high immuno-
genicity, is absent in normal tissue, and derives from a
protein required for maintenance of the malignant pheno-
type, which prevents a leukemic subclone from escaping
T-cell detection by downregulating the antigen’s expres-
sion [18].
There are several classes of tumor antigens (Table 1).

Many are tumor-associated antigens (TAAs) derived
from self-proteins that are expressed at low levels in
normal tissue and overexpressed or aberrantly expressed
in malignant cells, such as Wilms tumor-1 (WT-1) [19].
Tumor differentiation antigens are a subset of TAAs that
arise from self-proteins and are expressed in a distinct
subset of normal cells and often at higher levels in their
malignant cell counterpart. PR1, a peptide from neutro-
phil elastase and proteinase 3, is an example of a tumor
differentiation antigen as its source proteins are induced
during the promyelocyte stage and are overexpressed in
myeloid leukemias [20-22]. Targeting these classes of
self-antigens has shown promise in preclinical models,
vaccine trials, and early adoptive T-cell trials, but risks
toxicity to normal tissues as the antigens are not strictly
found on malignant cells. This is also true for the cancer-
testis antigens, a family of proteins expressed primarily by
germ cells and in various malignancies [23]. Several recent
trials highlight the risks of targeting TAAs, including a
trial at the National Institutes of Health (NIH) that tested
the adoptive transfer of autologous T-cells engineered
to express a murine TCR with specificity for an HLA-
A2-restricted peptide from carcinoembryonic antigen (CEA)
[24]. Anti-CEA T-cells were administered to 3 patients
with metastatic colon cancer. The treatment caused tumor
regression, including 1 partial response (PR), but severe,
dose-limiting toxicity in the form of inflammatory col-
itis was observed in all patients and caused the trial
to be halted. The colitis was an on-target adverse effect
resulting from T-cells recognizing the CEA epitope
on normal colonic epithelium, illustrating that the tar-
geting of self-antigens with modified T-cells is not without
consequence.
In the allogeneic setting, minor histocompatibility an-

tigens (mHAs) are endogenous polymorphic proteins
that differ between donor and recipient and can serve as
targets for GvL and GvHD [13]. These represent import-
ant antigens because donor cells are not tolerized to
these ‘foreign’ peptides enabling them to elicit higher
avidity T-cell responses. One goal is to identify mHAs that
are confined to the hematopoietic compartment, because
in this scenario, after the host blood system is replaced
with donor cells by alloSCT, the only mHA-expressing
cells remaining are malignant host cells. At least 12 such
hematopoietic-predominant mHAs have been identified
thus far and one such antigen, HA-1, has been targeted in
a pilot clinical trial [35,46].
Also in the category of “non-self” antigens are neoanti-

gens, otherwise known as tumor-specific antigens. These



Table 1 Classes of Leukemia Antigens

Leukemia antigens

Class Example(s) Pros Cons

Tumor-associated
antigens (TAAs)

WT-1 [25], hTERT [26], PRAME
[27], HMMR/Rhamm [28]

- multiple candidates identified-
often shared by > 1 malignancy

- present on normal tissue - self antigens that generate
low-avidity T-cells- must be
successfully processed and
presented by the MHC of

the malignant cell

Tumor
differentiation

antigens

PR1 [29], CG1 [30], CD33 [31] - more restricted distribution
than TAAs

- present on subset of normal
cells, which can include
hematopoietic stem cells

Cancer testis (CT)
antigens

Cyclin-A1 [32], NY-ESO-1
[33] , MAGE [34]

- frequently restricted to
non-essential tissues and tumor

- few identified in leukemia

Minor
histocompatibility
antigens (mHAs)

HA-1 [35], ACC1 [36], T4A
[37], LB-LY75-IK [38]

- result in high avidity allo T-cells
since epitopes are foreign to

donor- some are largely restricted
to hematopoietic compartment

- Necessitate rescue with
mHA-negative stem cells to

restore normal hematopoiesis-
need for allogeneic TCRs

- must be successfully
processed and presented

by the MHC

Tumor-specific
antigens

(neoantigens)

BCR-ABL [39], FLT3-ITD [40],
B-cell receptor idiotype [41]

- result in high avidity autologous
T-cells- many derive from proteins

critical in leukomogenesis

- individual-specific- few
identified in leukemia since

mutation rate is low

Oncoviral
antigens

HTLV-I Tax protein [42] - generate very high-avidity
T-cells

- only relevant to
virus-initiated malignancies

Extracellular
antigens

CD19 (see CD19 section),
Lewis Y [43], CD22 [44],

ROR1 [45]

-MHC-independent- interaction
with CAR is high-affinity

- many are present on
normal tissues

- require CAR for targeting,
which can mediate on-target,
off-tumor adverse effects

Additional references added in the table [31-34,36-38,40,45].
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are novel peptides that result from chromosomal translo-
cations, point mutations, deletions, or insertions within a
malignant cell’s genome. Neoantigens theoretically repre-
sent ideal targets as they should elicit high avidity T-cells,
they are absent on normal cells, and they may originate
from “driver” genes that are leukemogenic. In melanoma,
a highly mutated disease, it is thought that neoanti-
gens constitute much of the anti-tumor immune re-
sponse [47-49]. Leukemias, however, are among cancers
with the lowest mutation rate, making such antigens diffi-
cult to identify [50,51]. In CML, the BCR-ABL transloca-
tion does represent one source for leukemic neoantigens,
and several epitopes from this fusion protein have been
shown to elicit a T-cell response [52-55]. Early trials of
adoptively transferred anti-BCR-ABL T-cells have proven
safe with some evidence of disease response, however,
the success of tyrosine kinase inhibitors in CML has
largely overshadowed the development of ACT for this
disease [56,57].
Tumor-specific antigens (neoantigens) can also be

found within the clonal idiotypes unique to B-cell malig-
nancies, which contain the variable regions of the B-cell
receptor immunoglobulin heavy and light chains [58].
Vaccination strategies against these epitopes have dem-
onstrated success in lymphoma [41]. These antigens are
patient-specific, though, which raises questions about
the feasibility of using these epitopes and other highly
individualized neoantigens as targets. With advances in
whole exome sequencing and T-cell engineering, though,
they will likely gain importance.
The last class of “non-self” intracellular antigens are

oncoviral peptides, which are being investigated as
immunotherapeutic targets in human papillomavirus-
initiated cervical cancer, Epstein Barr Virus (EBV)-related
post-alloSCT B-cell lymphoproliferative disease, and EBV-
associated lymphomas [59-61]. They may also be applicable
in the setting of virally-induced hematologic malignancies,
such as HTLV-1 associated T-cell leukemia/lymphoma
[42,62]. The advantage of these viral peptides is that
they elicit very high avidity T-cell responses in contrast
to endogenous human epitopes [63].
Finally, it is important to emphasize that all of the

tumor antigens discussed thus far are intracellular anti-
gens, which rely on intact, functional cellular machinery
for their processing and MHC-restricted presentation.
This is a fundamental limitation of TCR-based T-cell ther-
apy because human leukocyte antigen (HLA) subtypes are
highly polymorphic and labor-intensive strategies that tar-
get a single epitope will only apply to the subset of pa-
tients expressing that particular HLA allele. Furthermore,
malignant cells are known to evade the immune system
by altering antigen processing and downregulating their
MHC expression [64]. One strategy to bypass these con-
straints is through use of CAR T-cells that target broadly
expressed membrane-bound molecules. A CAR links a
portion of the antibody binding domain to T-cell costimu-
latory and signaling domains [65]. Because the recognition
domain is engineered from an immunoglobulin, the CAR
recognizes extracellular, membrane-bound epitopes that
are not confined to an MHC, and this groundbreaking de-
velopment has added a new class of leukemia antigens
and vastly expanded the number of targetable epitopes.
Dozens of extracellular molecules are now being investi-
gated for their value as tumor antigens and, in leukemia,
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these include CD19, CD20, CD22, CD30, Lewis Y antigen,
among others [66]. However, although the immune re-
sponse can be effectively engineered using this technology,
the antigens that CAR T-cells target must still be evaluated
for their expression in normal tissues and for their import-
ance in leukemogenesis to limit the possibility of selecting
for antigen escape variants. Lastly, even though the major-
ity of CAR T-cells developed to date have targeted broadly
expressed cell surface receptors, CAR T-cells that target
peptides presented on HLA molecules are also currently
being investigated and work by integrating TCR-mimicking
antibodies [67]. It is likely that successful immunotherapy
for leukemia will require targeting many of these antigens
in multiple pathways, which likely accounts for the suc-
cess of the graft-versus-leukemia effect.

Adoptive T-cell Transfer Strategies for Leukemia
Although this review focuses specifically on modifica-
tions and ex vivo manipulation of CD4+ and CD8+ αβ
T-lymphocytes for adoptive transfer and treatment of
leukemia, ACT using other effector cell types – includ-
ing γδ T-cells, natural killer (NK) cells, NK T-cells, and
invariant NK Tcells − is also an area of active investigation
[68-71]. Adoptive T-cell therapy represents a natural ex-
tension of current treatment for leukemia because allo-
geneic transplant and DLI already involve the transfer of
large numbers of T lymphocytes. Further, adoptive T-cell
transfer to prevent CMV, adenovirus, and Aspergillus
Figure 1 Graphic representations of the various T-cell approaches use
peptides that are presented in the context of an MHC molecule. (b) Modifi
(MHC-peptide) but with an engineered (often higher affinity) TCR from an
synthetic polypeptide that contains the single chain variable fragment (s
transmembrane region, a costimulatory (Costim) domain, and a CD3ζ s
MHC-bound. (d) A TCR-like CAR utilizes the scFv fragment of a TCR-mim
molecule, but with a much higher affinity than conventional or most enginee
infections in the context of alloSCT has been well studied
and provides a valuable foundation for T-cell transfer
strategies [72-78]. T-cells have many properties of an ideal
therapeutic − their area of biodistribution is broad and in-
cludes the central nervous system, they can expand and
increase their potency in vivo, and they can acquire long
half-lives by establishing memory, ideally providing a res-
ervoir of antitumor immunity that leads to actual cancer
cures [79,80].
There are numerous strategies being developed to tar-

get malignant cells via adoptive T-cell transfer (Figure 1).
A major division within current ACT approaches is
whether or not T-cells undergo genetic modification prior
to infusion. T-cells that do not undergo this additional
step (conventional T-cells) must undergo ex vivo manipu-
lation and expansion prior to administration, an extensive
process where cells may spend a month or more in cul-
ture. The goal of this step is to generate large numbers of
T-cells that are specific for one or more tumor antigens
from an infrequent and polyclonal population. In contrast,
genetic modification of T-cells bypasses these lengthy en-
richment protocols by direct transfer of either TCR α and
β chains or a CAR, thereby endowing lymphocytes with
a secondary, engineered specificity. The rationale, ad-
vantages, and disadvantages for the most common strat-
egies are presented here.
Transfer of unmodified, conventional T-cells includes

both autologous and allogeneic lymphocytes that range
d to target leukemia antigens. (a) Conventional T-cells target
ed Ectopic α/β T-cells target the same epitope as a conventional TCR
autologous, allogeneic, or xenogeneic cell. (c) CAR T-cells contain a
cFv) of an antibody as the antigen-binding domain, a hinge, a
ignaling domain. CARs recognize extracellular antigens that are not
icking Ab, which recognizes a peptide antigen in the context of an MHC
red TCRs.
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in antigen specificity from polyclonal populations
to antigen-enriched subsets to antigen-specific T-cell
clones. Transfer of allogeneic polyclonal T-cells de-
scribes a DLI, which can be effective for treating re-
lapsed leukemia after alloSCT though with a high risk
of GvHD [12]. Adoptive transfer of bulk, ex vivo acti-
vated, autologous polyclonal lymphocytes has been tested
by Rapoport et al. and, when administered with tumor
vaccines, can generate antitumor immunity [81]. However,
both central and peripheral tolerance hinder this approach
and T-cells with specificity for tumor antigens are infre-
quent, have low avidity, and can be rendered anergic by
the immunosuppressive tumor microenvironment [17,63].
A number of tumor-specific T-cell enrichment strategies
exist and include culturing lymphocytes in the presence of
irradiated tumor cells, stimulating mHA-naive allogeneic
T-cells in the presence of mHA-positive host antigen-
presenting cells (APCs), or extracting T-cells from tumor
specimens and subsequently expanding them for reinfu-
sion. For example, a recent trial at the NIH tested the
adoptive transfer of polyclonal tumor-derived lympho-
cytes for the treatment of relapsed CLL or lymphoma
after alloSCT [82]. The rationale underlying this ap-
proach is that T-cells found within tumor specimens are
enriched for tumor antigen-specific cytotoxic T-lymphocytes
(CTLs), which can be made more potent by ex vivo costi-
mulation and expansion. This is analogous to tumor-
infiltrating lymphocyte (TIL) therapy for melanoma, which
has demonstrated overall response rates of up to 72% [83].
In the lymphoma/CLL trial, 8 patients were treated with
lymphocytes that were first extracted from their tumor
biopsy specimens and subsequently activated and ex-
panded with anti-CD3/anti-CD28 Ab-coated magnetic
beads. No GvHD was observed and modest anti-tumor
activity was seen in 4 patients [82]. Additionally, towards
the goal of targeting multiple antigens simultaneously, a
recent study demonstrated that autologous, functional T
cells from ALL patients could be generated with spec-
ificities enriched for multiple TAA (PRAME, WT-1,
MAGE-A3, and Survivin) by stimulating lymphocytes
using autologous APCs pulsed with complete peptide
pools spanning the entire amino acid sequences of the
tumor-associated proteins [84].
The most precise approach using conventional T-cells is

transfer of antigen-specific CTL clones, which are gener-
ated by labor-intensive limiting dilution cloning techniques
[85]. These methods produce large numbers of monoclo-
nal T-cells that recognize a defined HLA-restricted tumor
epitope. Autologous or allogeneic CTL clones can be gen-
erated using a variety of stimulator cells. For example, large
numbers of CTL clones with specificity for an immunodo-
minant HLA-A2-restricted epitope from WT-1 were gen-
erated by stimulating donor T-cells repeatedly with
peptide-pulsed autologous DCs for use in a recent clinical
trial (discussed below) [25]. There are benefits to using
conventional T-cells over T-cells genetically engineered to
express an ectopic TCR α and β chain. With conventional
T-cells, there are no concerns for ectopic and endogenous
TCR α/β mispairing, which has the potential to generate
new specificities and cause harm by nonspecifically react-
ing with normal tissues [86]. Also, though viral transduc-
tion of TCRs into mature cells has thus far proven safe,
the use of conventional T-cells also eliminates the worry
for insertional oncogenesis of transduced lymphocytes
[87,88]. Additionally, with conventional allogeneic CTL
clones, there is no secondary specificity of the T-cells and
thus a much lower risk for off-target GvHD. Finally, con-
ventional T-cells – whether autologous or allogeneic –
have been educated in the human thymus and have toxic-
ities that are more predictable than those for murine TCRs
and affinity-enhanced TCRs, which have exhibited dele-
terious off-target effects [89]. On the other hand, the
efficacy of adoptive transfer of conventional T-cells is lim-
ited by several factors. Tumor antigen-specific T-cells,
particularly those that recognize “self” antigens, are gener-
ally of low avidity − a problem that can be exacerbated in
patients with leukemia [90]. Moreover, generating large
numbers of clones requires weeks of repetitive stimulation
in culture, which can further reduce T-cell avidity while
allowing time for tumors to progress. Similarly, extensive
ex vivo manipulation can select for T-cells with more dif-
ferentiated, exhausted effector phenotypes that are less
likely to mediate durable, potent tumor regression after
adoptive transfer [91].
To bypass many of these limitations, methods have

been developed to deliver the genes for full-length TCR
α and β chains into autologous or allogeneic peripheral
blood mononuclear cells (PBMC), creating bispecific
T-cells with specificities determined by both the cell’s
endogenous TCR and the engineered TCR [92]. This
approach dramatically shortens the ex vivo manipulation
process and allows for generation of high avidity clones.
This strategy also allows for pre-selection of a desired sub-
set of lymphocytes for TCR transduction (central memory
T-cells, stem cell memory T-cells, etc.), which have dem-
onstrated better persistence and expansion in vivo relative
to the terminally differentiated, effector lymphocytes often
generated by lengthy limiting dilution cloning protocols
[93-96]. Retroviruses, lentiviruses, transposons, and other
constructs are all being actively investigated as means to
deliver the TCR (or CAR – see below), and the pros and
cons of each of these methods are outside the scope of this
discussion but have been reviewed by others [97,98].
Many refinements to TCR-engineering protocols have
already been developed and include the addition of disul-
fide bonds to prevent TCR α/β mispairing and codon
optimization to facilitate better TCR expression [99,100].
Additionally, very high affinity xenogeneic TCRs from
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HLA-A2 transgenic mice can be transferred into human
PBMC using these methods [101-104]. TCR affinity can
be further enhanced via site-directed mutagenesis of the
TCR antigen-binding region [105]. Unfortunately, some of
these “supercharged” T-cells have demonstrated unpre-
dictable toxicities in patients, and new safety measures for
testing high-affinity, modified T-cells against human tissue
samples prior to their use in clinical trials will need to be
implemented [89,106,107]. Nevertheless, several TCR con-
structs derived from conventional, human T-cells with
physiologic avidities have undergone extensive preclinical
testing and will now be studied in human leukemia trials
including those that redirect T-cells against HLA-A2 re-
stricted epitopes of HA-1 and WT-1 [100,108]. One
potential drawback to all types of TCR-based ACT is that
the binding between the TCR and MHC/peptide complex
is inherently degenerate, meaning that a given TCR can
recognize more than 1 peptide-MHC ligand [109]. This
could result in unforeseen toxicity in the form of off-target
tissue effects, particularly when large numbers of cells with
affinity enhanced or xenogeneic TCRs are infused. Lastly,
though ectopic TCR transfer overcomes many of the limi-
tations posed by conventional T-cells, the targeted epitopes
must still be successfully processed within the proteasome
and subsequently presented in the context of an MHC
molecule, which may afford malignant cells the opportun-
ity to escape this therapy via downregulation of surface
MHC or aberrant antigen processing.
As alluded to above, CARs represent a unique strategy

designed to circumvent many drawbacks of TCR-based
ACT. The antigen-recognition domain of the CAR is de-
rived from an antibody’s single-chain variable fragment
(scFv), which recognizes epitopes within membrane-bound
molecules. The majority of CARs developed to date target
broadly expressed surface molecules that are independent
of MHC, though CARs can be engineered to recognize
peptide-HLA epitopes as well [67]. The scFv fragment is
linked to a transmembrane region, a signaling protein
(typically CD3ζ), and a costimulatory domain (CD28,
4-1BB, OX-40, ICOS, and others). The CARs are deliv-
ered using vehicles similar to those discussed above for
ectopic TCRs (lentiviruses, retroviruses, etc.). CARs were
first reported by Gross et al. in 1989 [65]. Early clinical
trials using CARs demonstrated disappointing efficacy,
largely due to the lack of persistence of the modified
cells [110-112]. These 1st generation CARs lacked a costi-
mulatory domain. The addition of a costimulatory domain
(initially CD28 or 4-1BB) has revolutionized the field and
these 2nd generation CARs have begun to demonstrate
impressive clinical responses, particularly using anti-CD19
CARs for treatment of B-cell malignancies (see CD19
section below). Now, 3rd generation CARs (those with >1
engineered costimulatory domain) are reaching clinical
testing and may further enhance the redirected T-cells’
activity. By targeting extracellular epitopes, CARs have the
distinct advantage of thwarting many mechanisms of
tumor immunoevasion including MHC downregulation
and altered protein processing. The problem of tumor es-
cape is not solved completely, however, and malignant
cells with little or no expression of the targeted antigen
may evade this approach, underscoring the importance of
targeting proteins that are critical in leukemogenesis [79].
Another important advantage of CARs is that they are
very high-affinity receptors that mediate eradication of ma-
lignant cells with low levels of antigen expression. A conse-
quence of this enhanced affinity is that normal cells with
low antigen expression will also be targeted resulting in in-
creased on-target, off-tissue adverse effects [24,113,114].
CAR and ectopic TCR approaches share many of the same
advantages over conventional T-cell ACT. For example,
the subset of T-cells to be transduced with either artificial
receptor can be pre-enriched for central memory T-cells,
stem cell memory T-cells, or virus-specific T-cells and
either allogeneic or autologous cells can be used for
transduction. A fundamental difference between CARs
and ectopic TCRs is that they target extracellular or
intracellular antigens, respectively, but even this line is
being blurred. TCR-mimicking antibodies against PR1 and
WT-1 have been generated and are now being tested in
TCR-like CAR constructs in preclinical mouse models
[67,115,116]. These receptors function like TCRs since
they recognize a peptide antigen in the context of an
MHC molecule, but they have the benefit of binding with
higher affinity than a TCR. These and other recent ad-
vances illustrate how the field of ACT is rapidly evolving,
and it is likely that genetically modified T-cells will over-
take conventional T-cells within the field of ACT.

Additional T-cell modifications
Specificity is not the only focus of T-cell engineering.
Though outside the scope of this review, other authors
have outlined the many ways by which researchers are
aiming to build a better T-cell [66,97,117-119]. Examples
of these strategies include incorporating additional che-
mokines to improve T-cell trafficking, artificially upregu-
lating anti-apoptotic proteins, increasing resistance to
immunosuppressive cytokines, and adding suicide genes
to delete the modified lymphocytes in the event of sig-
nificant toxicity [120-126].

Allogeneic SCT platform
In many ways, ACT for leukemia lends itself to the allo-
geneic SCT setting where large numbers of allogeneic
T-cells are infused along with CD34+ progenitor cells
after conditioning chemotherapy. ACT is not limited to
this setting, however, and anti-CD19 CAR therapy in the
absence of transplant and in the autologous setting has
demonstrated success in heavily pretreated and refractory
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CLL patients [80]. Many questions will need to be an-
swered to utilize ACT most effectively and to properly
position it alongside current treatments including cyto-
toxic chemotherapy, molecular-targeted agents, and
alloSCT (Figure 2). Cost and manufacturing capabilities
will undoubtedly factor into these decisions as well. It
is conceivable that ACT could become initial, first-
line therapy for certain leukemia subtypes in contrast
to the challenging, post-alloSCT relapse setting where
it is typically tested today. Moreover, progress continues
to be made in other types of therapy making treatment
decisions a moving target. For example, alloSCT has his-
torically been reserved for young, healthy patients with re-
lapsed or high-risk disease, but this is changing with the
advent of nonmyeloablative transplant and improved sup-
portive care [127,128].
One aspect of ACT that is established and relevant to

leukemia is the benefit achieved with lymphodepletion.
This has been studied in the non-transplant setting
where depleting host lymphocytes prior to adoptive
T-cell transfer improves T-cell expansion and persistence
by freeing up important cytokines (IL-7, IL-15), encour-
aging homeostatic peripheral expansion, and depleting
Figure 2 Diagram of ACT within the alloSCT platform. T-cell depleted S
medications that can limit the efficacy of modified T-cells. Since allogeneic
pre-selected (CMV, EBV, varicella, etc.) or other GvHD prevention measures
regulatory T-cells [129-133]. Conditioning chemotherapy
prior to alloSCT would then serve a dual purpose in this
setting – eradication of disease and creation of space for
transferred leukemia-specific T-cells. Additionally, it may
be advantageous for patients to be in a state of minimal
residual disease (MRD) at the time of ACT, which is often
the situation after alloSCT. This may be especially true
for aggressive malignancies like AML and ALL, where
the leukemia burden can quickly increase. The reasons
for this are two-fold: first, it has been observed in early
clinical trials that ACT-associated toxicities such as the
cytokine-release syndrome are more severe in patients
with larger disease burdens and second, it can take days to
weeks for modified T-cells to expand in vivo and so an
MRD state affords the modified T-cells time to proliferate
and potentially overtake the malignant cell population.
Unfortunately, it is not always possible for patients to
reach a state of MRD, and early trials have shown that
anti-CD19 CAR therapy can mediate dramatic leukemia
responses even in patients with very advanced disease,
proving its versatility [79,134,135].
Two main concerns will need to be addressed to suc-

cessfully apply ACT to the alloSCT setting: the potential
CT would eliminate the need for post-SCT immunosuppressive
cells are used, the endogenous specificity of the T-cells would be
would need to be incorporated, such as naïve T cell depletion.
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for triggering GvHD and interference caused by im-
munosuppressive medications. Since the recipient’s
hematopoietic system is replaced by donor cells after
alloSCT, conventional or modified adoptively trans-
ferred T-lymphocytes will need to be of donor origin.
This being said, in the future it may be possible to
use universal or 3rd party donor T-cells by incorporat-
ing zinc-finger nuclease technology that can be used
to knockdown a T-cell’s MHC class I/II expression as well
as its endogenous TCR [136]. Nevertheless, it is well estab-
lished that infusing large numbers of allogeneic T-cells
into patients shortly after transplant results in unaccept-
able rates and severity of GvHD [137]. Therefore, it will
not be possible to simply transduce bulk donor T-cells
with the desired antigen-specific TCR or CAR construct
and infuse these cells at the time of transplant since the
endogenous allogeneic polyclonal TCRs would trigger
GvHD. This problem can be approached from many
angles. One possibility is to isolate donor lymphocytes
with defined, known specificities (EBV, CMV, varicella,
etc.) and to subsequently transduce only these oligoclonal
T-cells with a synthetic receptor (CAR or ectopic TCR)
and then infuse them at the time of transplant [138,139].
Another option is to deplete naïve donor T-cells prior to
ex vivo TCR/CAR transduction since naive T-cells have
been shown to play an important role in GvHD [140-142].
In contrast, if bulk polyclonal donor cells are used, de-
layed, low-dose administration of ACT at time of relapse
or many months after alloSCT may mitigate GvHD. This
is based on trials of DLI, where administration of low dose
donor T-cells more than 9 months after transplant re-
sulted in a GvHD rate of only 10% [143,144]. Encour-
agingly and along these same lines, in early trials of
anti-CD19 CAR therapy, infusions of modified, polyclonal
donor-derived cells that were collected from the recipient
(post-transplant) did not cause GvHD, possibly because of
tolerance developed within the host [145,146].
A separate platform for ACT that should be considered

is T-cell depleted alloSCT. Though opportunistic infec-
tions would be expected to increase, this approach might
be advantageous because it would eliminate the need for
immunosuppressive agents, which are known to abrogate
the effects of adoptively transferred T-cells [134,135].
Otherwise, for T-cell replete alloSCT, an attractive strategy
is to arm modified, antigen-specific T-cells with resistance
to immunosuppressive drugs (calcineurin inhibitors,
mycophenolate mofetil, methotrexate, or glucocorticoids)
[46,147-149]. Still, it must be kept in mind that the ration-
ale for using allogeneic rather than autologous transplants
for leukemia is both to avoid infusion of malignant cells
and to harness the GvL effect. If the GvL effect is suc-
cessfully condensed to a handful of tumor antigens, then
tumor-restricted, antigen-specific TCR and/or CAR con-
structs could be developed to target these antigens. This
would permit the use of autologous grafts and autologous
ACT (minor histocompatibility antigens excluded), which
could significantly reduce (if not eliminate) GvHD. As
outlined, the rapid pace of discovery in the field of ACT is
exciting. Developing the most effective ACT will require
careful consideration of the optimal antigens to target
(likely in combination), the T-cell approach to utilize, and
which of the myriad additional modifications to incorpor-
ate into the engineered lymphocytes.

Challenges and limitations
Though immunotherapy is typically characterized as less
toxic and more specific than chemotherapy and other
cancer therapies, multiple serious adverse effects in early
clinical trials using ACT underscore its tremendous po-
tency and risks. Adverse effects have resulted from mul-
tiple mechanisms. On-target, off-tissue toxicity describes
the situation where a T-cell appropriately recognizes an
antigen of interest (via TCR or CAR), but in the case
where this antigen is also expressed on healthy tissues.
One example of on-target, off-tissue toxicity was re-
ported in a Phase I clinical trial of renal cell carcinoma
patients treated with autologous CAR T-cells engineered
to recognize an epitope within the carbonic anhydrase
IX (CAIX) tumor-associated protein [113]. Multiple pa-
tients experienced significant liver toxicity due to the ex-
pression of CAIX on normal bile duct epithelium requiring
cessation of treatment in 4 patients. This on-target, off-
tissue toxicity can be mediated either by a CAR or a TCR,
however, CAR T-cells may prove the worst offenders
because of their inherent high affinity and built-in costi-
mulation. Off-target toxicity occurs when the antigen re-
ceptor (CAR or TCR) recognizes a different epitope than
is intended. This form of toxicity has been more common
with TCRs, which are inherently degenerate, and particu-
larly with mutated and xenogeneic TCRs that bypass
education in the thymus and can have unpredictable
specificities. For example, a patient-derived TCR with
specificity for the cancer-testis antigen HLA-A*01-MAGE-
A3 first underwent site-directed mutagenesis resulting in
enhanced affinity of the receptor, was subsequently in-
corporated into a lentiviral vector, and was then used in a
clinical trial testing the construct against myeloma and
melanoma. Unfortunately, the first 2 patients treated
experienced fatal cardiac toxicity that was incited by
an off-target epitope within the normal cardiac myocyte
protein titin (off-target titin peptide: ESDPIVAQY; on-
target MAGE-A3 peptide: EVDPIGHLY) [89,106]. These
adverse events have since been carefully analyzed and have
generated much discussion about strategies to predict on
and off-target toxicity.
Issues of specificity and antigen selection are para-

mount to the success of ACT but other challenges re-
main. Even in the context of a highly avid T-cell and a
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tumor-restricted antigen, T-cell persistence, trafficking,
and diminishing receptor transgene expression can all be
problematic [150]. Furthermore, the tumor microenvir-
onment is an inhospitable place for T-cells and adop-
tively transferred cells will need to resist inhibitory signals
from tumor and stromal cells to remain effective [151].
Even after initial recognition and lysis of tumor cells, the
adoptively transferred lymphocytes must then outcompete
the tendency of malignant subclones to evade killing via
downregulation of MHC molecules, altered antigen pro-
cessing, and epigenomic and genomic evolution [64]. And
on a broader scale, issues of cost, manufacturing, and
standardization will also be important to the applicability
of ACT and have been reviewed by others [97,152].
Finally, even patients who experience durable, complete
remissions from ACT can experience adverse effects in the
form of cytokine release syndrome, tumor lysis syndrome,
hemophagocytic lymphohistiocytosis, and B-cell aplasia
though investigators and clinicians are learning a great deal
about how to limit these toxicities. It must be kept in mind,
though, that many of the patients treated with ACT thus
far have dismal prognoses and limited to no treatment
options in the absence of clinical trials. Furthermore, ACT
is still in its infancy and if the current pace of innovation is
sustained, it promises to grow in importance. Along these
lines, below is a discussion of current strategies being
tested in clinical trials.

Targeting leukemia antigens in the clinic
CD19
Trials of anti-CD19 CAR T-cell therapy in patients with
B-cell malignancies have generated exciting clinical re-
sults and underscore the tremendous potential of antigen-
specific ACT for leukemia. These trials – spearheaded by
groups at the NIH, Baylor College of Medicine, the
University of Pennsylvania, and at Memorial Sloan
Cancer Center (MSKCC) – have laid the foundation for
this new therapeutic modality that is certain to gain import-
ance in the treatment of ALL, CLL and B-cell lymphomas.
CD19 functions as a component of the B-cell co-receptor

that enhances B-cell receptor signaling upon antigen en-
counter and CD19 expression is restricted to malignant
and normal cells of the B-cell lineage [153,154]. In numer-
ous preclinical studies, anti-CD19 CAR T-cells demon-
strated selective lysis of B-lineage tumor lines and primary
leukemia/lymphoma cells in vitro and also showed potent
antitumor activity in murine xenograft and immuno-
competent mouse models [152,155-164]. Subsequently
in 2010, Kochenderfer et al. at the NIH reported the
first successful use of anti-CD19 CAR T-cell treatment
in a patient with advanced follicular lymphoma who
received cyclophosphamide and fludarabine condition-
ing followed by a single infusion of autologous T-cells ret-
rovirally transduced with a 2nd generation CD19 CAR
(CD28 costimulatory domain) along with IL-2 [165]. This
patient experienced a dramatic partial response as well as
B-cell aplasia in weeks 9 through 39 after CAR infusion,
demonstrating the potency and CD19 specificity of this
approach. In the expanded NIH cohort, which included
8 patients with lymphoma or CLL, 6 of 7 evaluable pa-
tients achieved objective disease responses, though in
the context of concurrent cyclophosphamide/fludarabine
chemotherapy [166]. Directly attributable to the CD19
CAR therapy, B-cell aplasia was observed in 4 of 8 pa-
tients for 6 months or more, demonstrating the persist-
ence (and toxicity) of anti-CD19 CAR T-cells. Shortly
thereafter, impressive responses for CLL patients were re-
ported in a separate Phase I trial, where 3 patients were
treated with a 2nd generation anti-CD19 CAR that differed
from the NIH construct in both the costimulatory domain
(4-1BB in contrast to CD28) and the virus used for trans-
duction (lentivirus as opposed to retrovirus) [80,134].
Despite all 3 patients having extensive and chemorefrac-
tory disease at the time of CAR infusion, all 3 experienced
objective responses – 2 complete responses (CRs)– and
the CAR T-cells expanded in vivo more than 1000-fold
and persisted beyond 6 months. A recent update for 14
heavily pretreated and refractory CLL patients treated on
this protocol described an overall major response rate of
57% − including 3 patients with durable CRs that have
lasted up to 35 months and 5 patients with partial re-
sponses (PRs) [167].
Encouraging results have also been demonstrated in both

pediatric and adult acute lymphoblastic leukemia, a more
aggressive malignancy that is less immune-susceptible and
responds poorly to DLI. This is partly due to low expres-
sion of costimulatory molecules by ALL cells [8,9,168,169].
One of the first CD19 CAR trials conducted in ALL pa-
tients was a Phase I study that used autologous T-cells ret-
rovirally transduced to express an anti-CD19 CAR with a
CD28 costimulatory protein. This trial enrolled 5 adult pa-
tients with relapsed disease [135]. Prior to CAR T-cell in-
fusion, 2 patients had overt disease, 2 had MRD, and 1
was MRD negative. All patients underwent lymphodeple-
tion with cyclophosphamide followed by a split-dose in-
fusion of CAR-modified T-lymphocytes. All 4 patients
with detectable disease had CRs and became MRD nega-
tive between days 8–59 after infusion, enabling eligible pa-
tients to receive allogeneic SCT. One patient with overt
disease prior to CAR infusion relapsed with CD19+ dis-
ease 90 days after treatment, and all patients showed signs
of normal CD19+ B-cell recovery, highlighting that CAR
T-cells in these patients did not persist indefinitely in
contrast to those in the aforementioned CLL trial that
harbored the 4-1BB costimulatory domain. Importantly
in this ALL trial, toxicity in the form of cytokine release
syndrome was associated with a larger burden of disease
at the time of CAR infusion, and the 2 patients with
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morphologic disease prior to treatment required high-
dose steroid therapy for cytokine release syndrome,
which likely abrogated the therapeutic effects of the
CAR-modified lymphocytes. The initial promising results
from this trial were recently updated to include responses
for 16 adult patients with relapsed or refractory ALL
who have been treated on this protocol [170]. The overall
complete response rate to date is 88%. In those patients
with gross morphologic disease prior to CAR infusion,
78% have experienced a CR, allowing many to receive
alloSCT. In this trial, the benefit of treating the cytokine
release syndrome with the IL-6 monoclonal antibody,
tocilizumab, was demonstrated, and it was shown to
relieve symptoms with a less profound impact on CAR
T-cell expansion when compared to high-dose steroids.
Impressive response rates have similarly been observed

in a separate ongoing Phase I trial for pediatric and adult
relapsed ALL patients, which incorporates the identical
CAR construct used in the above-referenced CLL trial
(lentiviral transduction with 4-1BB costimulatory do-
main). Results were first reported for 2 pediatric patients
who both demonstrated complete morphologic response
to CAR therapy within 1 month despite recalcitrant dis-
ease, though 1 child relapsed 2 months later with CD19
negative lymphoblasts [79]. Both patients experienced
significant toxicity, and the first child that was treated
demonstrated severe but reversible cytokine release syn-
drome necessitating mechanical ventilation, vasopressor
support, and aggressive medical therapy. Despite this,
the tremendous expansion of anti-CD19 CAR T-cells
to > 1000-fold in vivo and their persistence in 1 patient
for >180 days is incredibly promising. Updates from this
trial were also reported at a recent ASH meeting [145]. A
total of 16 children and 4 adults with relapsed ALL have
been treated and 82% of patients have experienced CRs −
3 patients are still pending evaluation. Unfortunately, 3
patients with an initial CR have since relapsed, reportedly
with CD19+ disease. All patients in this trial experienced
some degree of cytokine release syndrome and, as shown
in previous trials, tocilizumab proved beneficial.
Importantly, 11 of the patients in this ALL trial had re-

ceived prior allogeneic SCT [145]. For this cohort, the
cells used to generate the anti-CD19 CAR treatment
were collected from the recipient, however depending
on the degree of chimerism at the time of pheresis, the
majority of these cells were of donor origin. Encour-
agingly, GvHD was not observed in this group despite
pre-treatment with cyclophosphamide, a phenomenon
that could be attributable to the donor cells having ac-
quired tolerance in the host as all patients were at least
6 months post-SCT [145]. In the alloSCT setting, inves-
tigators have already undertaken the next logical step,
which is to determine whether allogeneic cells collected
from healthy donors can be modified with an anti-CD19
CAR construct and used to treat leukemia patients. The
advantage of this method is twofold: first, there is no
leukemic contamination of the infused cells and, second,
healthy donor lymphocytes are potentially more potent
cytotoxic effectors since they have not been exposed to
multiple rounds of chemotherapy and immunosuppres-
sive agents. The primary concern with infusing large
numbers of allogeneic cells is for GvHD, the most fre-
quent complication of donor lymphocyte infusion (DLI),
and thus investigators have proceeded cautiously with
this approach [9,171]. In one study, 8 patients with re-
lapsed ALL or CLL were treated with healthy donor allo-
geneic T-cells that were first enriched for virus-specific
lymphocytes (cytomegalovirus (CMV), EBV, or adeno-
virus) prior to their transduction with a 2nd generation
anti-CD19 CAR containing the CD28 costimulatory do-
main [138]. This approach is advantageous because the
specificity of the endogenous TCR is for viral antigens
and thus infusion of bispecific T-cells, those with en-
dogenous TCRs specific for viral antigens and ectopic
TCRs specific for CD19, poses less risk for GvHD. Fur-
thermore, viral reactivation is common in the post-SCT
setting and could expand modified, CAR-expressing
T-cells through viral TCR-signaling and potentially en-
hance their antitumor effect. In this pilot trial, the bispeci-
fic T-cells persisted for a median of 8 weeks and resulted
in 2 objective responses −1 CR for 3 months and 1 PR for
2 months. No GvHD was observed. As predicted, EBV re-
activation in 2 patients resulted in a concomitant increase
of CD19 CAR transgene expression.
Lastly, a recent trial at a separate center investigated

the safety of treating relapsed post-SCT patients with
anti-CD19-CAR T-cells collected from their healthy do-
nors; however, in this trial the modified donor T-cells were
not enriched for any particular endogenous specificity
[146]. Ten patients with either relapsed CLL or lymphoma
who had undergone prior alloSCT and at least 1 DLI were
enrolled and underwent a single infusion of allogeneic
CAR T-cells without any preparative lymphodepletion.
Surprisingly, no GvHD was observed though CAR cells
were largely undetectable after 1 month. Three patients
experienced regressions of their malignancy, with 1 on-
going CR in a CLL patient at 9 months. The next planned
trial of this allogeneic CD19 CAR-modified therapy will
incorporate preparative lymphodepletion, which would be
predicted to both increase the antitumor potency and po-
tentially heighten the risk for GvHD.
Currently, there are 20 open trials listed on the clinical-

trials.gov website as of June 2014 that are studying anti-
CD19 CAR therapy in various permutations. For example,
one study is using autologous anti-CD19 CAR cells for
children with relapsed ALL that incorporate an EGFRt
tracking/suicide construct and a methotrexate-resistance
gene (clinicaltrials.gov identifier NCT01683279). Several
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CD19 CAR trials are recruiting at Baylor including a
Phase 1 trial that will study the simultaneous infusion of
both 2nd and 3rd generation CARs in patients with Non-
Hodgkin Lymphoma (NHL) or CLL (clinicaltrials.gov
identifier NCT01853631). CARs targeting the CD19 anti-
gen are leading the way in the clinic and insights gained
from these trials will be invaluable for the entire field.

Wilms tumor antigen 1
The Wilms tumor protein (WT-1) is a zinc-finger tran-
scription factor that is important in normal cellular de-
velopment and cell survival. In the human embryo,
WT-1 is required for normal kidney development and,
in adults, WT-1 has low expression levels in hematopoietic
progenitor cells and in the ovary, testis, podocytes of
the kidney, and peritoneal and pleural mesothelium
[172,173]. Alternative splicing generates several isoforms
of WT-1 and depending upon the cell in which the gene is
expressed, it can function as either an oncogene or a
tumor suppressor [174]. WT-1 represents a TAA as it is
overexpressed in both leukemias (AML, CML, myelodys-
plastic syndrome [MDS], and ALL) and various solid
tumors (ovary, breast, renal cell, colon, lung), where it
acts as a putative oncogene [175-179]. Up to 70% of AML
cases overexpress WT-1, where it is a marker of poor
prognosis and minimal residual disease [180-183]. Al-
though its precise biologic role in leukemia remains un-
known, Yamagami et al. demonstrated that knockdown of
WT-1 via antisense oligomers significantly inhibited the
growth of primary leukemic clones, suggesting that the
protein plays an important role in leukemogenesis [184].
Thus, WT-1 represents an attractive immunotherapeutic
target, and there are currently 3 open clinical trials for
adult leukemia patients that center around this unique
antigen.
There are numerous preclinical studies that have

demonstrated diverse and feasible approaches to target
WT-1 in the clinic, and these have been expertly reviewed
by O’Reilly et al. from MSKCC [185]. Briefly, several
groups have demonstrated that WT-1-specific, functional
CD4 and CD8 T-cells can be generated from healthy
donor PBMC by stimulation with various WT-1 pep-
tides [186-190]. Spontaneous autologous T-cell responses
against WT-1 can also be detected in the peripheral blood
of leukemia patients, providing rationale for either allo-
geneic or autologous ACT approaches [191,192]. More
recently, Xue et al. have engineered a retroviral vector en-
coding the T-cell receptor alpha and beta chains derived
from a WT-1 TCR specific for the HLA-A0201-restricted
RMF peptide. This TCR construct was optimized by
incorporating a disulfide bond to prevent alpha/beta
mispairing and, when transduced into a CML patient’s
T-cells, mediated prevention of autologous leukemia
engraftment in an immunocompromised mouse model
[100,193]. This TCR is now in clinical testing in London
(see below). To broaden WT-1 specific ACT to patients
with less common HLA subtypes, investigators have de-
veloped an elegant system in which donor T-cells are
stimulated with pools of overlapping WT-1 peptides gen-
erating WT-1 specific T-cells with specificities that
can be decoded using IFN-gamma secretion and a matrix
of known peptide sequences. Using this approach T-cells
specific for 27 different WT-1 peptides with diverse HLA-
restriction were shown to lyse WT-1+ leukemic targets
[194]. This approach, too, is now being tested in the clinic.
As a final mention in the preclinical realm, Dao et al. have
developed a full-length humanized TCR-mimic antibody
from a phage display library that is specific for the WT-1
RMF peptide in the context of HLA-A0201. This antibody
(ESK1) was shown to be highly avid and in 2 different
mouse models, nearly ablated leukemia xenografts from
2 ALL cell lines, both alone and in concert with adoptive
transfer of human effector cells [115]. The scFv from
an affinity matured WT-1 TCR-mimic antibody has since
been integrated into a CAR construct that has demonstrated
lysis of solid tumor and B-cell leukemia cell lines [67].
As of June 2014, the clinicaltrials.gov website lists 3 Phase

1/2 trials that are using ACT to target the WT-1 antigen in
leukemia patients. The first is based at University College
in London and uses the retroviral vector developed by
Xue et al. (discussed above) to redirect autologous T-cells
from HLA-A0201-positive CML and AML patients via
coexpression of a TCR specific for the A2-restricted WT-1
RMF peptide (clinicaltrials.gov identifier NCT01621724).
This group hypothesizes that transducing and infusing
fresh autologous, engineered T-cells will result in greater
persistence of the WT-1 redirected cells compared to
those from long-term culture. The second trial is spon-
sored by MSKCC and builds upon their success in gener-
ating functional, WT-1 specific T-cells from healthy
donors with diverse HLA subtypes by in vitro stimulation
with APCs pulsed with pools of overlapping WT-1 pep-
tides [185,194]. This trial includes patients with AML,
MDS, CML or ALL who are at high risk of relapse after
alloSCT and utilizes infusions of WT-1-specific donor
T-cells that are expanded in vitro, cryopreserved, and
then infused at the time of recurrence or appearance of
MRD. Reportedly, these infusions have been well toler-
ated without renal, hematopoietic, or GvHD toxicity, and
they can transiently reduce or eliminate WT-1-expressing
cells from the circulation [185] (clinicaltrials.gov identi-
fier NCT00620633). The third trial is based at the Fred
Hutchinson Cancer Research Center in Seattle and builds
upon this center’s success in an earlier pilot trial. In the
pilot trial, 11 HLA-A201-positive patients with AML or
ALL who had received alloSCT were treated with adoptive
transfer of donor-derived, in vitro expanded WT-1 RMF
peptide-specific CD8+ T-cells. Here, the addition of the
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cytokine IL-21 to the ex vivo T-cell expansion protocol for
the last 4 patients resulted in improved persistence of the
WT-1-specific T-cells and expression of phenotypic
markers associated with long-lived memory [25]. The
infusions of large numbers of WT-1 specific T-cells (up to
1 × 1010 cells/m2) were safe and no GvHD, hematologic,
or renal toxicity was observed. Encouragingly, of the 4 pa-
tients treated with antigen-specific T-cells generated in
the presence of IL-21, all 4 experienced persistence of the
WT-1 specific T-cells and demonstrated durable CRs
(22–38 months post SCT) despite a ~90-95% risk of re-
currence, though 1 patient has since relapsed. In the
current Phase 1/2 trial, a TCR isolated from a very high
avidity T-cell clone specific for the A2-restricted RMF
WT-1 peptide has been isolated and is being retrovirally
transduced into donor T-cells (similar to the London trial
except in an allogeneic setting). In this trial, eligible pa-
tients are those with AML, CML, or MDS who are post-
SCT, HLA-A0201-positive, and are at high-risk of relapse
or who recur with overt or MRD positive disease. These
patients will be treated with multiple infusions of donor
EBV or CMV-specific T-cells that are transduced to coex-
press the WT-1 specific TCR. The rationale for transdu-
cing only virus-specific T-cells is that in the allogeneic
setting, transduction of T-cells with unknown secondary
specificities would likely result in considerable GvHD. Pa-
tients will also receive IL-2 infusions to boost persistence
of the antigen-specific cells.

Lewis Y
The Lewis Y antigen (LeY) is a difucosylated carbohydrate
present on various cell surface proteins and lipids [195]. It
is related to the Lewis blood group of antigens but is not
expressed on red blood cells. In normal tissues, the LeY

antigen shows low levels of surface expression on the
gastrointestinal mucosa, ciliated epithelium of the trachea
and bronchus, and on neutrophils [196,197]. It is primarily
studied as a potential tumor-associated antigen (TAA) in
the context of solid malignancies since the LeY antigen is
highly expressed in 60-90% of epithelial cancers including
those of the breast, pancreas, ovary, colon, stomach and
lung [198,199]. A recent study also showed expression of
the Lewis Y antigen in ~ 50% of AML and multiple mye-
loma (MM) cases, suggesting it could be a targetable TAA
in a wide range of malignancies [200]. Its biologic function
remains unknown though higher expression of LeY corre-
lates with poorer prognosis in lung cancer, suggesting a
potential role for Lewis Y in maintaining a malignant
phenotype [201].
Preclinical validation of the LeY antigen gained momen-

tum when Kitamura et al. developed an anti-LeY human-
ized monoclonal antibody – known as Hu3S193 [202].
This antibody was used alone and as an immunoconjugate
in several early phase clinical trials targeting the Lewis
Y antigen in patients, first in those with solid malignan-
cies. The humanized monoclonal antibody Hu3S193 (also
used to generate the anti-LeY CAR discussed below) was
tested in a Phase I trial in 15 patients with primarily
breast, colorectal, or lung cancer. There were no objective
tumor responses, however, there was significant uptake of
the antibody in tumor metastases and no uptake in nor-
mal tissue. Critically, the antibody infusion was safe with
only one Grade 3 or 4 adverse effect − an elevated alkaline
phosphatase in a patient with extensive hepatic metastases
[203]. In an effort to increase the potency of tumor re-
sponse, two Phase I trials were conducted using the Lewis
Y antibody, Hu3S193, conjugated to either doxorubicin or
calicheamicin. In the Hu3S193-doxorubicin immunocon-
jugate trial, 66 patients with mainly metastatic colon or
breast cancer were treated, and significant, dose-limiting
GI toxicity was observed, likely due to Lewis Y expression
on normal GI epithelium. Objective responses were seen
in only 2 patients [204]. In the Hu3S193-calicheamicin
immunoconjugate trial, 9 patients with solid tumors were
enrolled. Disappointingly, this conjugate showed primary
localization to the liver instead of tumor and demon-
strated rapid hepatic clearance from the circulation [205].
The promising yet limited effects of the Hu3S193 anti-

body laid the foundation for the targeting of LeY using
ACT. In preclinical studies, Hu3S193 was used to gener-
ate a 2nd generation anti-LeY CAR, which was first tested
against various malignant epithelial-derived cell lines
and in a mouse xenograft model of ovarian cancer. The
anti-LeY CAR T-cells lysed breast and colorectal cell
lines in vitro, and lysis correlated positively with the
level of LeY expression. Importantly, no IFN-γ release or
lysis was observed against neutrophils, which have been
shown to express Lewis Y at low levels. Further, in im-
munocompromised mice anti- LeY CAR T-cells mediated
regression of established human ovarian tumors, though
tumors did eventually recur [198]. More recently, this
same CAR was used in preclinical testing against AML
and MM, which also show overexpression of the Lewis Y
antigen. The CAR T-cells lysed human MM and AML cell
lines in vitro and delayed the incidence of plasmacytomas
in a NOD/SCID mouse model, though no lysis of primary
malignant cells or rejection of established myeloma or
AML was demonstrated [200].
The first and (thus far) only ACT clinical trial targeting

the LeY antigen in patients utilized the 2nd generation
anti-LeY CAR mentioned above, which demonstrated ac-
tivity against both solid and hematologic tumors in pre-
clinical studies. Results from the first 5 enrolled patients,
all with AML, were recently published and are summa-
rized here [43]. This Phase I trial enrolled patients with
high-risk or relapsed/refractory AML or MM whose tu-
mors demonstrated expression of LeY on at least 20% of
blasts, with a median fluorescence intensity twice that of
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normal lymphocytes. It is worth noting that the first 5 pa-
tients enrolled had relatively low Lewis Y expression com-
pared to the patient samples used in the study that first
described the presence of Lewis Y antigen in AML and
MM [200]. Three of the four patients who underwent
CAR T-cell infusion (one patient died from induction
chemotherapy) had cytogenetic MRD prior to CAR T-cell
infusion; the fourth patient had 70% blasts in the bone
marrow as well as circulating disease. Patients were pre-
conditioned with fludarabine and cytarabine and then in-
fused with a median of 4.45 × 106 anti-LeY CAR T-cells/
kg. As a comparison, these cell doses are comparable to
those administered in the successful CD19 CAR clinical
trials [134]. There were no grade 3 or 4 toxicities, and
there was evidence of biologic activity though responses
were modest at best. Of the 3 patients with MRD prior to
CAR T-cell infusion, 1 demonstrated a sustained morpho-
logic remission of 23 months though cytogenetic clones
remained detectable, the 2nd patient showed a transient
cytogenetic remission of 5 months, and the 3rd patient did
not respond and relapsed 49 days after infusion. The 4th

patient who had significant disease prior to anti-LeY CAR
treatment had a very transient reduction in blasts, though
the effect attributable to the CAR cells in the context of
pretreatment with fludarabine and cytarabine is difficult
to discern. Encouragingly, the CAR T-cells did show
trafficking to the bone marrow and persisted in 3 of the
4 patients for 2, 4 and 10 months, though with variable
transgene copy number by qualitative PCR. Perhaps most
disappointingly, the 3 patients who showed some biologic
response all relapsed with myeloblasts that still expressed
the Lewis Y antigen with comparable MFIs to their pre-
CAR treatment disease; there was no antigenic shift des-
pite persistence of the CAR cells. The authors hypothesize
that this could be due to an immunosuppressive micro-
environment or downregulation in transgene expression.
It might simply be related to the relatively low expression
of Lewis Y on the myeloblasts and inadequate activation
of the modified cells. The authors suggest the next anti-
LeY CAR T-cell trial will be performed in lung cancer pa-
tients, where there is a more dense and uniform expres-
sion of the LeY antigen.

κ Light chain
The major long-term toxicity associated with the successful
anti-CD19 CAR T-cell trials discussed above has been
B-cell aplasia, which is secondary to the expression of
CD19 on normal and B-cell precursors [79,80,134,135,164].
A strategy to avoid this adverse effect has been developed
using engineered 2nd generation CAR T-cells with specifi-
city for the κ light chain of surface immunoglobulin (sIg)
within the B-cell receptor [206]. The concept behind
this approach is that B-cell malignancies are clonal
disorders wherein a patient’s malignant cells express a
κ or λ-restricted sIg, but not both. In those patients
with a κ-restricted malignancy, the anti-κ CAR T-cells
would ideally eliminate all malignant cells and, conse-
quently, normal B-cells with κ expression; however, nor-
mal λ-restricted B cells would be left untouched providing
these patients with adequate B-cell immunity [207,208].
In preclinical studies, the κ-light chain specific CAR

T-cells selectively lysed κ-expressing lymphoma and
leukemic cell lines as well as autologous and allogeneic
κ-restricted primary CLL cells [206]. In vivo, human
T-cells retrovirally transduced with the anti-κ CAR medi-
ated regression of lymphoma xenografts. As an aside, this
was among the first reports to show the importance of a
CD28 costimulatory domain in the CAR construct, and it
confirmed in this preclinical study that CD28 improved
the expansion of the engineered anti-κ T-cells [206,209].
A Phase I trial is currently recruiting patients with re-
lapsed CLL, NHL, or MM to study treatment with autolo-
gous 2nd-generation anti-κ CAR T-cells (clinicaltrials.gov
identifier NCT00881920). The trial will assess the safety
and, as a secondary measure, the survival and function of
anti-κ T-cells at 3 escalating T-cell doses after lymphode-
pletion with cyclophosphamide. It will be important to see
whether antigen escape limits the success of this approach
since MM and CLL are known to have variable expression
of sIg [210-212]. Moreover, the antibody portion of the
CAR construct is derived from a mouse, and the immuno-
genicity of this CAR in humans remains to be seen. Con-
versely and in support of this approach, targeting the
B-cell receptor in lymphoma through idiotype vaccines
has shown great promise and points to the feasibility of
using the B-cell receptor (whether the idiotype or the light
chain portion) as a TAA [41].

HA-1 and other minor histocompatibility antigens
As defined above, minor histocompatibility antigens (mHAs)
are peptides derived from endogenous, polymorphic pro-
teins that differ between donor and recipient and are
thought to account for much of the GvL effect within
HLA-matched donor-recipient pairs [213]. These antigens
can also trigger GvHD, and therefore the major goal with
mHAs has been to identify and target mHAs that show
predominant expression in the hematopoietic compart-
ment. Strong preclinical evidence for targeting these
mHAs was demonstrated in an immunocompetent mouse
model where targeting a single mHA (B6dom1) resulted in
complete eradication of leukemia without GvHD [214].
Two recent clinical trials have investigated unique approaches
towards this common objective of treating leukemia by
targeting hematopoietic-restricted mHAs.
In one clinical trial utilizing adoptive transfer of mHA-

specific T-cells, investigators first designed an in vitro cul-
ture system to enrich for mHA-specific donor T-cells
[215]. In this trial, PBMC were collected from patients
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at post-transplant timepoints when their hematopoietic sys-
tem had been replaced by donor cells. These donor-derived
cells were then stimulated in vitro with pre-transplant, irra-
diated recipient PBMC and recipient EBV-LCLs (Epstein
Barr Virus-transformed B lymphoblastoid cell lines) in an
effort to generate donor T-cells specific for hematopoietic
mHAs [216]. CD8+ T-cell clones were then generated
using limiting dilution cloning. Donor CD8+ clones
that lysed recipient EBV-LCLs but neither donor EBV-
LCLs nor recipient fibroblasts were selected for treatment
of 7 patients with relapsed MDS or ALL after alloSCT.
Patients received cytoreductive chemotherapy but not
specific lymphodepletion prior to T-cell infusions, which
were administered in a dose-escalation protocol. Unfortu-
nately, most of the patients had GvHD prior to treatment
so it was difficult to grade the degree of GvHD caused by
these T-cells, though no cases were directly attributable to
the clones. Surprisingly, the major toxicity observed was
pulmonary toxicity, which occurred in 3 patients and un-
derscores the reality that adoptively transferred T-cells
tend to initially accumulate in the lungs making this a vul-
nerable site for adverse effects [217]. Five of 7 patients
achieved transient CRs, and 3 of these responses were dir-
ectly attributable to the CTL clones and not the cytore-
ductive chemotherapy. A genome-wide, single nucleotide
polymorphism-based correlation was used to identify the
mHA targeted by 3 of the generated clones − 2 that were
novel [218]. Interestingly, mRNA expression analysis sug-
gested that leukemic blasts downregulated expression of
1 of the targeted mHAs after CTL treatment, again illus-
trating that it may be important to target proteins directly
involved in leukemogenesis. Two of the patients who
demonstrated significant pulmonary toxicity were infused
with clones that recognized epitopes from proteins also
expressed on the pulmonary alveolar epithelium, and the
CTLs were shown to be directly causative in these adverse
reactions. The CTLs showed potent effector function but
did not persist past 21 days, possibly as a result of their
extended time in culture that resulted in a differentiated,
effector population of CD8+ T-cells. Unfortunately, all pa-
tients who demonstrated an initial response relapsed and
succumbed to their disease.
In a more recent Phase I study, Meij et al. tested the

feasibility and safety of treating relapsed post-SCT AML
and CML patients with donor-derived T-cells specific
for the mHA, HA-1 [35,219]. HA-1-specific T-cells were
generated from healthy donor PBMC using donor den-
dritic cells pulsed with the HLA-A2 restricted HA-1
peptide during a 5-week in vitro culture period. The
cells were then infused into patients in the absence of
preconditioning or in vivo cytokine administration. The
cells were primarily from the effector memory subset
and 6-27% were tetramer positive (i.e. HA-1-specific).
Unfortunately, no objective responses were demonstrated
though a patient with CML did have stable disease for
3 months. HA-1 specific T-cells were detected only in this
CML patient and were present for ~ 8 weeks. No GvHD
was reported. The authors concluded that more potent re-
sponses might be generated by shortening the in vitro cul-
ture process possibly via ectopic TCR alpha/beta transfer and
also through use of physiologic concentrations of cytokines
during the in vitro expansion. Towards this goal, a codon
optimized and cysteine modified HA-1-TCR α/β retroviral
construct has been designed for use in clinical trials [108].

BCR-ABL
Tumor-specific antigens (neoantigens) within the BCR-
ABL1 fusion tyrosine kinase have also been investigated
as targets for ACT of CML. Several groups have shown
that CML patients have functional, circulating T-cells
specific for these neoantigens that can be expanded with
a peptide vaccine [39,53,220]. A recent clinical trial in-
vestigated the feasibility and safety of prophylactically
administering donor CD8+ T-cells enriched for specific-
ities against peptides from WT-1, PR1, and BCR-ABL to
CML patients after T-cell depleted alloSCT [57]. Five pa-
tients were treated with cells enriched for CTL with speci-
ficity for HLA-A3, A11, or B8-restricted BCR-ABL
neopeptides. In these patients, the cells infused were
largely polyclonal DLIs with wide ranges in the percentage
of BCR-ABL-specific cells actually administered – from
0.1 – 17%. Though few patients were enrolled and the ef-
fects of therapy attributable to ACT are indiscernible from
those related to alloSCT, 1 patient who received large
numbers of BCR-ABL specific donor T-cells that exhibited
robust in vitro cytotoxicity has remained in molecular re-
mission for > 40 months and antigen-specific cells have
persisted at high frequencies for >1 year.
A separate report described the successful treatment of a

CML patient with leukemia-reactive CTL in 1999, prior to
the advent of many of the engineering techniques now
available. In this study, the CML patient had relapsed with
accelerated-phase disease after alloSCT and DLI and was
treated with donor cells enriched for leukemia-specific anti-
gens via multiple rounds of in vitro stimulation with patient
leukemia cells. The T-cells were not fully characterized but
potentially recognized neoepitopes from BCR-ABL among
others. This patient experienced molecular remission
for 2 years until she later died of ischemic heart disease
[221]. These studies offer proof-of-principle for targeting
leukemia neoantigens though larger scale studies are
needed using modified T-cells or updated in vitro expan-
sion protocols. Table 2 summarizes the antigens discussed
in the section.

Conclusions
In summary, ACT represents a promising strategy for
treating leukemia patients. The list of antigens discussed



Table 2 Summary of hematologic tumor antigens being targeted in clinical trials of ACT

Antigen HLA-restriction Hematologic Malignancy† Immunotherapeutic Potential

CD19 No ALL, CLL, Lymphoma 1) Common to several lymphoid malignancies

2) Highly potent effectors have been developed

3) Cell surface protein that does not require processing or MHC presentation

4) Anti-leukemia effects must be balanced with toxicity against normal B cells

WT-1 Yes AML, CML, MDS, ALL 1) Has been studied primarily in myeloid hematologic malignancies, although recent
work suggests its potential in lymphoid malignancies [222]

2) Minimal expression in normal tissues

3) Requires intracellular processing and antigen presentation

Lewis Y No AML, MM 1) At this time, studies are limited to AML and MM

2) Studies to date have shown moderate potency against malignant cells

3) May be limited by GI toxicity

κ Light Chain No CLL, lymphoma, MM 1) Limited to lymphoid malignancies and MM

2) Still in early stages of development, therefore potency is difficult to assess

mHA Yes Applicable to all hematologic
malignancies

1) Potent immune responses against malignant cells, including stem cells

2) May also trigger GvHD

3) Limited by the frequency of the minor allele in the population

4) Difficult to predict off-target tissue expression

BCR-ABL Yes CML 1) Limited studies using ACT to target BCR-ABL in the era of tyrosine kinase inhibitors

2) Mainly useful in CML and possibly Ph+ ALL
†Expression of the antigens has been reported in other hematologic and solid tumor malignancies.
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above is by no means exhaustive and many ACT strategies
are in the pipeline to target other leukemia antigens in-
cluding PR1 [29], human telomerase reverse transcriptase
(hTERT) [26], receptor tyrosine kinase-like orphan re-
ceptor 1 (ROR1) [45], CD23 [223], CD123 [224], pref-
erentially expressed antigen in melanoma (PRAME) [27],
hyaluronan-mediated motility receptor (HMMR/Rhamm)
[28], CD22 [44], cathepsin G [30] and aurora kinase a
(AURKA) [225] among others. The clinical success
achieved using anti-CD19 CARs has shifted momen-
tum in favor of this type of engineered receptor, but
exciting clinical trials utilizing ectopic TCR α/β recep-
tors and even conventional T-cells are also underway.
Significant challenges remain in outlining the best setting
for ACT of leukemia, though this will likely vary by dis-
ease type, targeted antigen, and T-cell approach. More-
over, incorporating automation and standardization will
be critical to shifting the ACT field away from intricate
protocols and small, single-center trials towards broader
applicability. The goal is to harness and refine the tremen-
dous specificity and potency of lymphocytes, best evi-
denced by the ability of alloSCT and DLI to cure otherwise
incurable diseases (CML, CLL), into a T-cell treatment for
leukemia that is more effective and less toxic than current
standard of care therapies.
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