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Relevance of Wnt signaling for osteoanabolic
therapy
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Abstract

The Wnt signaling pathway is long known to play fundamental roles in various aspects of embryonic development,
but also in several homeostatic processes controlling tissue functions in adults. The complexity of this system is
best underscored by the fact that the mammalian genome encodes for 19 different Wnt ligands, most but not all
of them acting through an intracellular stabilization of β-catenin, representing the key molecule within the so-called
canonical Wnt signaling pathway. Wnt ligands primarily bind to 10 different serpentine receptors of the Fzd family,
and this binding can be positively or negatively regulated by additional molecules present at the surface of the
respective target cells. One of these molecules is the transmembrane protein Lrp5, which has been shown to
act as a Wnt co-receptor. In 2001, Lrp5, and thereby Wnt signaling, entered center stage in the research area of
bone remodeling, a homeostatic process controlling bone mass, whose disturbance causes osteoporosis, one of
the most prevalent disorders worldwide. More specifically, it was found that inactivating mutations of the human
LRP5 gene cause osteoporosis-pseudoglioma syndrome, a rare genetic disorder characterized by impaired bone
formation and persistence of hyaloid vessels in the eyeballs. In addition, activating LRP5 mutations were identified in
individuals with osteosclerosis, a high bone mass condition characterized by excessive bone formation. Especially
explained by the lack of cost-effective osteoanabolic treatment options, these findings had an immediate impact
on the research regarding the bone-forming cell type, i.e. the osteoblast, whose differentiation and function is
apparently controlled by Wnt signaling. This review summarizes the most important results obtained in a large
number of studies, involving tissue culture experiments, mouse models and human patients. While there are still
many open questions regarding the precise molecular interactions controlling Wnt signaling in osteoblasts, it is
obvious that understanding this pathway is a key to optimize the therapeutic strategies for treating various skeletal
disorders, including osteoporosis.
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Introduction
In 1982 the first Wnt gene was identified as a preferen-
tial integration site for MMTV (mouse mammary tumor
virus) and originally termed Int [1]. This gene was found
to represent the mouse homolog of the Drosophila gene
wingless, and subsequently termed Wnt1 (Wingless and
Int-1) [2]. It is now known that the mammalian genome
encodes for 19 different Wnt ligands, all of them charac-
terized by a high number of conserved cysteine residues
[3]. Although their precise molecular mode of action is
variable, common properties, interaction partners and
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downstream signaling events have been identified,
mostly triggered by Drosophila genetics, where many
components of the canonical Wnt signaling pathway
were originally identified. More specifically, although
the Wnt ligands carry a classical N-terminal signal se-
quence, there is a specific endoplasmastic reticulum
protein (Wntless) required to facilitate their secretion
[4]. Another important step is a posttranslational cysteine
palmitoylation, mediated by the enzyme Porcupine, which
also causes poor solubility of the respective Wnt ligands,
thus explaining their autocrine/paracrine mode of action
[5,6]. The primary Wnt receptors are Frizzled proteins,
structurally belonging to the large family of serpentine re-
ceptors and encoded by 10 different Fzd genes in mice or
humans [7,8]. The Wnt-Fzd interaction is enhanced by
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single pass transmembrane co-receptors termed Arrow in
Drosophila and Lrp5 (Low density lipoprotein receptor-
related protein 5) or Lrp6 in the mammalian system
[9-11]. The complexity of these ligand-receptor interac-
tions is further enhanced by the existence of alternative
Fzd/Lrp binding proteins, such as Norrin or R-Spondins
[12,13]. In addition, there are several extracellular mole-
cules acting as Wnt signaling antagonists (Figure 1), such
as soluble Fzd-related proteins (Sfrps) or members of the
Dkk (Dickkopf) family, the latter ones binding to Lrp5/6
and inactivating their functions [14,15]. One putative Wnt
signaling antagonist, termed Sclerostin, was first identified
by human genetics in individuals with increased bone for-
mation, as discussed below [16,17]. Given the fact that
most of these mentioned protein families have several
members, it is essentially impossible to establish a unifying
concept for the mode of Wnt signaling activation in spe-
cific cellular settings.

The Wnt signaling pathway
Based on this argument, it is not surprising that the
intracellular signaling cascades triggered by Wnt binding
to Fzd receptors are equally complex. In fact, various
Wnt ligands have been shown to activate many different
signaling pathways in a large number of distinct cell
types [3,7,18]. Nevertheless, one particular pathway has
emerged in Drosophila and mammalian cells as a major
mediator of Wnt activation, and this pathway is known
as canonical Wnt signaling [3,18]. The key molecule
Figure 1 Different mechanisms of Wnt singaling inhibition. In
an activated state (uninhibited) a Wnt molecule binds to a Fzd
receptor and a co-receptor of the Lrp family. Dkk molecules interact
with Krm receptors to form a ternary complex with Lrp co-receptors,
thereby removing them from the activation complex [55]. Sclerostin
(Scl) has been suggested to function in a similar way, yet its interaction
with Lrp5 does not require Krm binding. In contrast, secreted Fzd-related
proteins (Sfrps) sequester the activating Wnt ligand to antagonize
Wnt signaling.
within this process is β-catenin, a cytoplasmic protein
that can enter the nucleus to regulate gene expression.
In a non-activated state, β-catenin is mostly degraded by
the proteasome, which requires the formation of a de-
struction complex containing the scaffold protein Axin2,
the tumor suppressor APC and two serine/threonine ki-
nases (CK1 and GSK3) that phosphorylate β-catenin to
mark it for degradation [18]. Wnt binding to Fzd/Lrp re-
ceptors causes a rapid decomposition of the β-catenin
destruction complex, mostly explained by Axin2 recruit-
ment to the phosphorylated Wnt receptors. The stabilized
non-phosphorylated β-catenin can enter the nucleus to
interact with transcription factors of the Tcf/Lef family,
thereby inducing transcription of specific target genes,
one of them being Axin2 [19,20].
While canonical Wnt signaling is inducible by many

different Wnt ligands, the efficacy of stimulation is vari-
able. Moreover, some Wnt molecules have an entirely
different mode of action and activate pathways summa-
rized as non-canonical Wnt signaling [21,22]. Although
the precise mechanism of action remains to be clarified
for most of the Wnt ligands, many researches have doc-
umented that for instance Wnt3a (a canonical Wnt lig-
and) and Wnt5a (a non-canonical Wnt ligand) have
entirely different effects on cellular functions and gene
expression. Whether these effects are generally true for
various cell types in a physiologically relevant setting is
one of the key questions for future research, especially
since specific members of the Wnt pathway play funda-
mental roles for development and function of the organ-
ism. One of these molecules is Lrp5, whose mutation in
mice and humans determines, how much bone matrix is
built to form a stable skeleton.

Osteoporosis, a major public health problem
Osteoporosis is a systemic low bone mass disorder asso-
ciated with an increased risk of skeletal fractures. It is
considered as a major public health problem, not only
because of its high prevalence (more than 200 million af-
fected individuals worldwide), but also because skeletal
fractures are associated with a high morbidity and mor-
tality rate [23,24]. The direct and indirect costs related
to osteoporosis are currently estimated to be 38.7 billion
€ per year in the European Union, and since the yearly
number of fractures is expected to double within the
next 50 years, this socioeconomic problem will dramat-
ically increase. This explains why there is an urgent need
to define better options for prevention and/or treatment
of osteoporosis, since the currently available strategies
have several limitations. At the cellular level osteopor-
osis is explained by impaired bone remodeling, a physio-
logically relevant process mediated through the activities of
two cell types, bone-resorbing osteoclasts and bone-forming
osteoblasts. These two cell types are fundamentally different
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in terms of progenitor cells, mode of action and regulatory
molecules controlling their differentiation and function
(Figure 2). This explains why there are two distinct
therapeutic options to treat osteoporosis, either osteo-
clast inhibition (anti-resorptive) or osteoblast activa-
tion (osteoanabolic).
More specifically, bone-forming osteoblasts derive from

mesenchymal progenitor cells, which requires expression
of specific transcription factors, such as Runx2 (Runt-re-
lated transcription factor 2) and Osx (Osterix) [25-27].
Once differentiated they act in large groups of cells that
simultaneously produce an extracellular matrix primarily
consisting of type I collagen, but also containing additional
proteins, some of them bone-specific. This matrix is first
non-mineralized and termed osteoid, but then gradually
incorporates mineral in form of hydroxypapatite by
mechanims, which are still not fully understood [28].
The same applies for the terminal step of osteoblast
differentiation into a specialized cell type known as the
osteocyte. These post-mitotic cells form a network within
the mineralized bone matrix, and there is good evidence
demonstrating their functions as orchestrators of bone re-
modeling, especially in response to mechanical stimuli
[29]. In sharp contrast to osteoblasts, the bone-resorbing
Figure 2 Schematic presentation of the cell types involved in
bone remodeling. Bone-forming osteoblasts (left side) derive from
mesenchymal progenitor cells and are arranged in large groups of
cells simultaneously producing the bone matrix. This matrix is first
non-mineralized (osteoid), before hydroxyapatite crystals get incorporated
into the collagen fibrils to form mineralized bone. Some osteoblasts
become embedded and differentiate into osteocytes, thereby
forming a cellular network within the mineralized bone matrix.
Bone-resorbing osteoclasts (right side) are derived from hematopoietic
progenitors by cellular fusion. They are large multinucleated cells
migrating along the bone surface to resorb it by two major mechanisms,
i.e. extracellular acidification and secretion of matrix-degrading enzymes.
The most important regulators of osteoclastogenesis (Rankl and
Opg) and bone formation (Lrp5 and Sclerostin/Scl) are described
in the text.
osteoclasts respresent a specialized hematopoietic cell type
forming by fusion of monocyte/macrophage progenitors.
This step is primarily regulated by the cytokine Rankl
(Receptor activator of nuclear factor κB ligand), which
is mostly produced by cells of the osteoblast lineage,
thereby coupling bone resorption to bone formation.
The pro-osteoclastogenic action of Rankl is physiolo-
gically inhibited by its decoy receptor Opg (Osteopro-
tegerin), a molecule expressed by osteoblasts in response
to activated canonical Wnt signaling [30,31]. Once dif-
ferentiated the multinucleated osteoclasts resorb the
mineralized bone matrix by two principial mechanisms,
i.e. extracellular acidification and secretion of matrix-
degrading enzymes.
For the treatment of osteoporosis, there are currently

several types of anti-resorptive drugs available. These in-
clude the bisphophonates, a group of compounds non-
specifically binding to mineralized bone, a monoclonal
antibody neutralizing Rankl, SERMs (selective estrogen
receptor modulators), or salmon calcitonin [32-34]. In
contrast, there is only one type of osteoanabolic treatment
available so far, daily injection of parathyroid hormone
(PTH 1–84) or a PTH fragment (PTH 1–34) [35,36]. Due
to divergent cost-effectiveness of these therapeutic op-
tions, the vast majority of patients are currently treated
with generically available bisphosphonates, i.e. alendronate
or risedronate. Importantly however, it is conceivable to
speculate that long-term blockade of bone resorption ad-
versely affects skeletal integrity, as it interferes with the
continuous renewal of the bone matrix. This is supported
by an increasing number of case reports describing atyp-
ical long bone fractures in patients with bisphosphonate
treatment for more than 5 years [37-41]. Moreover, since
high bone mass due to impaired bone resorption (osteope-
trosis) is associated with increased fracture risk, while the
opposite is the case in states of high bone mass due to in-
creased bone formation (osteosclerosis), one of the major
goals of skeletal research is to identify novel target pro-
teins for osteoanabolic medication [42]. This explains why
it is of utmost clinical importance to identify molecules
specifically regulating the activity of osteoblasts, and why
the discovery of LRP5 as a gene affecting bone formation
in humans was considered as a one of the biggest break-
throughs in the bone field ever.

Lrp5, a Wnt co-receptor regulating bone formation
Given the above-described complexities of Wnt signaling
and bone remodeling, it is quite useful that one particu-
lar statement is undoubted, namely that Lrp5 is a posi-
tive regulator of bone formation, not only in mice, but
also in humans. The excitement about identifying the
LRP5 gene as a determinant of bone mass was initiated
in the 1990s, where linkage analyses performed by sev-
eral groups demonstrated the existence of a locus on
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human chromosome 11q13 segregating with two entirely
different bone remodeling disorders [43,44]. One dis-
order with autosomal recessive inheritance was osteo-
porosis pseudoglioma syndrome (OPPG), a condition
characterized by low bone mass, skeletal fractures and
persistence of embryonic eye vascularization causing
blindness [45]. The other disorder, exhibiting autosomal
dominant inheritance and usually termed high bone
mass (HBM), was characterized by excessive bone for-
mation, thickening of most bony structures and reduced
fracture risk [44]. The fact that both conditions, at least
with respect to bone formation, were essentially oppos-
ing each other raised the hypothesis that they were
caused by mutations of the same gene, causing either
loss or gain of function. A second hope was that the
protein encoded by this gene could serve as a better tar-
get for osteoporosis treatment and prevention than the
previously known regulators of bone formation.
Based on these arguments it was a big sensation that

in 2001 inactivating mutations within the LRP5 gene
were shown to cause OPPG, while gain-of-function mu-
tations of LRP5 were shown to cause HBM [46-48].
Moreover, since the HBM mutations of LRP5 were
found to be located within the extracellular region
known to serve as a binding site for Wnt signaling an-
tagonists of the Dkk family, there was an immediate and
straightforward molecular explanation for both diseases.
Most importantly however, since LRP5 was known to
encode a transmembrane co-receptor for ligands of the
Wnt family, the clinical and therapeutic relevance of
these findings was tremendous. This explains why many
researchers in the bone field became interested in study-
ing the role of the Wnt signaling pathway for osteoblast
differentiation and bone formation, and why many
mouse models with impaired Wnt signaling have been
analyzed for their skeletal phenotype (reviewed in [49]).
Two of these models were the ones recapitulating OPPG
and HBM. Here it was clearly shown that Lrp5-deficient
mice displayed an osteoporotic phenotype solely ex-
plained by impaired bone formation, while bone resorp-
tion was unaffected [50]. Likewise, mice carrying an
HBM mutation within the Lrp5 gene display osteo-
sclerosis, i.e. high bone mass due to excessive osteoblast
activity [51]. Moreover, since an in vivo anti-osteoanabolic
function was also demonstrated for the Wnt signaling an-
tagonist Dkk1, it was reasonable to speculate that the ac-
tivity of Lrp5 is physiologically inhibited by binding of
Dkk1 to the HBM region [52-55]. Although it is still pos-
sible that exactly this mechanism is the most relevant to
explain the actions of Lrp5, this simplified concept has
been challenged substantially, mostly explained by the
complexities of the Wnt signaling pathway.
Since various findings obtained by analyzing genetic-

ally modified mouse models have been summarized in a
recent review article [49], the present review will focus
on two important issues regarding Lrp5-regulated signal-
ing pathways and the relevant Lrp5 expression site. With
respect to Wnt signaling, one obvious experiment was to
inactivate β-catenin specifically in the two bone remodel-
ing cell types. This was done by Cre-loxP-technology,
where mice with a floxed β-catenin allele were crossed
with different Cre-expressing mouse lines allowing cell-
type specific inactivation. Here it was shown that deletion
of β-catenin in cells of the osteoclast lineage results in in-
creased osteoclastogenesis, while the deletion in mesen-
chymal osteoprogenitor cells causes an arrest of osteoblast
differentiation and a shift towards chondrogenic differen-
tiation [56-60]. Since Lrp5-deficiency however affects os-
teoblasts at a later stage of differentiation, the most
important findings were obtained through the analysis of
mice lacking β-catenin specifically in fully differentiated
osteoblasts or osteocytes. Here it was found, in three dif-
ferent models, that β-catenin does not control osteoblast
activity, as the bone formation rate was unaffected
[30,61,62]. Instead, β-catenin inactivation in differenti-
ated osteoblasts led to markedly increased osteoclasto-
genesis, molecularly explained by decreased production of
Opg. These findings essentially rule out that Lrp5 controls
bone formation by β-catenin-dependent signaling path-
ways, thus suggesting that Lrp5 either activates non-
canonical Wnt signaling or functions in an entirely differ-
ent manner.
A second highly relevant question is whether Lrp5

controls bone formation in a cell-autonomous manner,
which is particularly important, since Lrp5 is a ubiqui-
tously expressed gene. Based on the finding that osteo-
blast proliferation is decreased in Lrp5-deficient mice,
but not in Lrp5-deficient primary osteoblasts, one study
attempted to identify the mode of Lrp5 action in an un-
biased approach, i.e. genome-wide expression analysis
[63]. Here it was found that Lrp5-deficiency resulted in a
dramatically increased expression of Tph1 (Tryptophan
hydroxylase 1), encoding the rate-limiting enzyme of
peripheral serotonin biosynthesis. Although this differ-
ential expression was observable in osteoblasts, it was
particularly pronounced in the duodenum, where the
enterochromaffine cells are the major producers of per-
ipheral serotonin. In a remarkable study the authors
went on to demonstrate that Lrp5 controls bone forma-
tion in a serotonin-dependent manner, and most import-
antly they were able to show that both, inactivating or
activating Lrp5 mutations only caused a bone phenotype,
when present in the duodenum, while osteoblast-specific
Lrp5 mutations did not affect skeletal remodeling [63].
Surprisingly however, another study using different tar-
geting strategies, but aiming at the same question, came
to an opposite conclusion. Here it was shown, also in a
convincing manner, that Lrp5 activation or inactivation
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in osteocytes causes the expected bone formation phe-
notypes, whereas Lrp5 mutation in the duodenum had
no effect on bone mass or circulating serotonin [64]. It
is still remarkable that these two entirely different con-
clusions were made, and that the mode of Lrp5 action
remains a matter of debate, even 13 years after the initial
discovery as a major bone mass determinant in humans.
What is clear however is that Lrp5 controls bone forma-
tion, while β-catenin in osteoblasts does not fulfil the
same function.

What is the molecular platform promoting bone
formation together with Lrp5?
Although the relevant Lrp5 expression site remains a
matter of debate, there is one alternative explanation for
the similar proliferation capacity of wildtype and Lrp5-
deficient primary osteoblasts. In fact, assuming that Lrp5
acts as a Wnt co-receptor, a potential cell-autonomous
defect of Lrp5-deficient osteoblasts may only be ob-
served in the presence of a specific Wnt ligand. This is
however not a trivial issue, since there is so far only lim-
ited knowledge about the nature and origin of the rele-
vant Wnt ligand controlling bone formation. This implies
for instance, that although Wnt3a administration to osteo-
blasts has been shown to regulate gene expression by in-
ducing canonical Wnt signaling, it is purely speculative
that such an effect is of any physiological relevance, espe-
cially in the context of Lrp5. Moreover, since osteogenesis
and bone formation in vivo occurs in close proximity to
various types of bone marrow cells, it is quite an import-
ant question, by which cell type a physiologically relevant
Lrp5-interacting Wnt ligand is produced, and whether this
particular cell type is present or absent in ex vivo cell cul-
ture systems. Another key question is related to the re-
sponsible Fzd receptor interacting with Lrp5. Although we
have previously found that Fzd9 is the only Fzd gene with
differential expression during osteoblastogenesis ex vivo,
and although Fzd9-deficient mice display reduced bone
formation [65], it remains to be established, whether this
particular receptor is a relevant interaction partner of
Lrp5 and binds a specific Wnt ligand with osteoanabolic
function. Again, this question is not easy to address, since
the differences in primary structure between the 19
known Wnt molecules also translate into alternative
modes of receptor interaction and downstream events.
In this regard it was again very helpful that inactivat-

ing mutations of specific Wnt molecules were found to
be associated with low bone mass, either in mice or in
humans [66-73]. Interestingly, the most evident osteoa-
nabolic function of one particular Wnt ligand was only
uncovered recently for the founding member of the fam-
ily, i.e. Wnt1. More specifically, inactivating mutations
of the human WNT1 gene have been reported by differ-
ent research groups in a large number of unrelated
families with impaired bone formation [66,72,73]. The
severity of the respective disorders ranged from fractures
in early childhood, similar to osteogenesis imperfecta, to
a moderate reduction of bone mineral density in adult-
hood, classified as early-onset osteoporosis. The large
number of identified mutations segregating with the dis-
ease provides hallmark evidence for Wnt1 acting as a
physiologically relevant osteoanabolic molecule. Surpris-
ingly however, such a function has essentially been over-
looked in mouse models with Wnt1 inactivation. Only
recently, one group has carefully analyzed the phenotype
of the swaying mice (sw/sw), carrying a spontaneous mu-
tation of Wnt1 identified in 1991 [74]. These mice are
primarily known for their neurologic deficits (which are
not found in the patients), but their skeletal phenotype
had not been studied until 2014. Here it was found that
the sw/sw mice display a dramatically reduced bone for-
mation rate causing severe osteoporosis with a fracture
rate of 65% [75]. These remarkable findings raise the
possibility that Wnt1 acts as ligand for Lrp5, and pos-
sibly Fzd9, which can now be addressed in appropriate
mouse models and tissue culture experiments. From a
therapeutic perspective it is extremely important to iden-
tify this molecular platform positively regulating bone for-
mation, as potential drugs need to be developed against
specific members of a given protein family.

Sclerostin, a putative Lrp5-antagonist and an ideal drug
target
In this regard it is consequential that the final paragraph
of this review article will focus on a molecule that came
out of nowhere in 2001 and that potentially acts as an
Lrp5 antagonist. By definition, this molecule is highly
relevant, as it was discovered by human genetics, again
through analysis of families displaying osteosclerosis.
The first report identified two inactivating mutations
causing an autosomal recessive sclerosing bone dysplasia
(sclerosteosis), and the thereby identified gene was
termed SOST (Sclerostin) [16]. Immediately thereafter,
another study identified a 52 kb deletion downstream
of the SOST gene causing reduced transcription in in-
dividuals with van Buchem disease, a skeletal dysplasia
with similarities to sclerosteosis [17]. At the time of
discovery there was only little knowledge regarding the
molecular action of Sclerostin (the protein encoded by
the SOST gene), yet it was clear to be a secreted cyst-
eine knot-containing protein with some homology to
the DAN (differential screening selected gene abbera-
tive in neuroblastoma) family of Bmp (bone morpho-
genetic protein) antagonists. Although the mode of
Sclerostin action is still not fully clarified more than
10 years thereafter, it is undoubted that this protein is pri-
marily produced by osteocytes, and that it acts as an anti-
osteoanabolic molecule. Not surprisingly, Sost-deficient
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mice display a remarkable high bone mass phenotype,
whereas transgenic mice over-expressing Sost are osteo-
porotic [76,77]. Since all of these phenotypes, in mice and
humans, are caused by changes in bone formation, similar
to what is known for Lrp5 mutations, it was immediately
speculated that Sclerostin could act as an Lrp5 antagonist.
This was first shown in 2005 and subsequently confirmed
one year later, where the authors additionally found that
the HBM mutations within the Lrp5 molecule interfere
with Sclerostin binding [78-81]. Importantly, these data
provided a unifying hypothesis for the function of the two
different molecules, whose mutations cause osteosclerosis
in humans. From then on Sclerostin was considered to
represent a Wnt signaling antagonist binding to the HBM
region of Lrp5 (Figure 1).
Although it is now speculated that this interaction is

not solely responsible for the anti-osteoanabolic function
of Sclerostin, as it also interacts with Lrp4, Lrp6 or
BMPs [82-84], it is quite important to discuss the rele-
vance of these findings in the present review article. In
fact, if one only focuses on therapeutic relevance, it is
not even necessary to fully understand the Sclerostin
mechanism of action. What is mostly important, and
this is undoubted, is that Sclerostin is a secreted protein
that can be neutralized. This is why monoclonal anti-
bodies against Sclerostin have been developed in order
to test their application as an osteoanabolic drug. In
2014, i.e. 13 years after the identification of the first
SOST mutations in individuals with sclerosteosis, the
phase-II-clinical studies have been published [85]. Here
it was found, that Sclerostin-specific antibodies, directly
compared to two currently available treatment options
(PTH and bisphosphonate), led to the strongest increase
in bone mineral density after one year of administration
by monthly injection. In addition, the first injections of
this antibody led to a doubling of the serum concentra-
tions of PINP (procollagen type I N-terminal propeptide),
a biomarker of bone formation. Although this immediate
osteoanabolic effect declined during the course of the
one-year treatment, it is obvious that antagonizing Scler-
ostin holds great promise for the treatment and possibly
prevention of osteoporosis. Whether the physiological ac-
tion of Sclerostin is mediated by Lrp5 or Wnt signaling in-
hibition remains a question of basic research.
At that point it is also important to state that a similar

approach is currently applied for Dkk1, whose inhibition
might additionally be relevant to prevent bone destruc-
tion in a subset of cancer patients. More specifically,
genome-wide expression analysis demonstrated elevated
Dkk1 expression by myeloma tumor cells [86]. The po-
tential therapeutic relevance of these findings was con-
firmed in animal experiments, where the administration
of a Dkk1-neutralizing antibody attenuated the develop-
ment of osteolytic lesions in immunodeficient mice
engrafted with multiple myeloma cells [87-89]. Since
Dkk1 inhibition has further been shown to attenuate
erosive bone destruction in a mouse model of rheuma-
toid arthritis [90], it is highly relevant that Dkk-1 anti-
bodies are under evaluation in clinical studies. Finally,
since Sfrp1-deficiency has been shown to improve frac-
ture healing in mice [91], it is reasonable to speculate
that antagonizing this additional mechanism of Wnt
signaling inhibition (Figure 1) is another therapeutic
approach to improve skeletal integrity in patients.
Having such alternatives might in fact be extremely im-

portant, especially since the above-mentioned antibodies
only cause a transient increase of bone formation bio-
markers [85,92]. Although one can only speculate about
the underlying mechanisms so far (i.e. antibody develop-
ment against the therapeutic antibodies, compensatory in-
duction of other Wnt signaling components, or decreased
expression of physiologically relevant osteoanabolic fac-
tors), this is surely a relevant problem to solve. In this con-
text it is again important to come back to the overall
complexities of bone remodeling regulation, especially re-
garding the bilateral crosstalk between osteoblasts and os-
teoclasts. Of note, it has been demonstrated that the
osteoanabolic influence of PTH (1–84 and 1–34) is re-
duced by simultaneous treatment with the bisphosphonate
alendronate [93,94]. In contrast, a combination therapy
with PTH (1–34 = Teriparatide) and a Rankl-specific anti-
body (Denosumab) was found to increase bone mineral
density to a greater extent than the respective treatments
alone [95]. With respect to Sclerostin inhibition it was
found that pre-treatment or co-treatment with alendro-
nate did not impair the effects of a Sclerostin antibody in
ovariectomized rats [96]. Although this observation was
principally confirmed in a recent clinical study comparing
the effects of a Sclerostin antibody in naïve and
bisphosphonate-treated individuals [92], it remains a
matter of debate, whether it will be useful to combine
Sost inhibition with specific anti-resorptives. While
these questions have to be addressed in additional
clinical studies, there is certainly a need to under-
stand the cellular and molecular bases behind the
present clinical observations and to follow alternative
strategies to increase bone formation by activating
Wnt singaling.

Conclusions
Wnt signaling is an important pathway regulating many
cell types, and after the discovery of LRP5 mutations in
individuals with altered bone formation Wnt signaling
became highly relevant to understand bone remodeling
and its disorders. Although Sclerostin antibodies are
promising candidates for solving a huge clinical and so-
cioeconomic problem, it is still useful to follow alterna-
tive approaches, especially since they are as promising.
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In this regard one key issue is surely to clearly define the
interaction partners of Lrp5 that physiologically control
bone formation. In particular, with respect to drug de-
velopment, it is tremendously important to identify the
specific members of the Wnt and Fzd protein families
that are part of this molecular platform, together with
Lrp5, possibly Sclerostin, and presumably some others.
Given the speed of molecular genetic research in the last
decades, this should however not be a major problem.
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