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The macrophage: a therapeutic target in HIV-1
infection
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Abstract

Human immunodeficiency virus (HIV) is still a serious global health concern responsible for more than 25 million
deaths in last three decades. More than 34 million people are living with HIV infection. Macrophages and CD4+
T cells are the principal targets of HIV-1. The pathogenesis of HIV-1 takes different routes in macrophages and CD4+
T cells. Macrophages are resistant to the cytopathic effect of HIV-1 and produce virus for longer periods of time.
In addition, macrophages being present in every organ system thus can disseminate virus to the different anatomical
sites leading to the formation of viral sanctuaries. Complete cure of HIV-1 needs better understanding of viral
pathogenesis in these reservoirs and implementation of knowledge into robust therapeutic products. In this review
we will focus on the unique relationship between HIV-1 and macrophages. Furthermore, we will describe how
successful antiretroviral therapy (ART) is in suppressing HIV and novel molecular and cellular strategies against HIV-1
in macrophages.
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Introduction
Human immunodeficiency virus type 1 (HIV-1) can in-
fect several types of immune cells, however macrophages
and CD4+ T lymphocytes cells are the principal targets
of HIV-1 in human body [1,2]. Macrophages are termin-
ally differentiated immune cells which play an important
role in the clearing of pathogens and cellular debris by
phagocytosis. Besides, they also act as the antigen pre-
senting cells and present processed pathogen antigen
peptides to the CD4+ T cells via MHC II pathway [3,4].
This exchange of information between macrophages and
CD4+ T cells also has important role in the transmission
of HIV-1 from macrophage to CD4+ T cells [5-7]. In
addition, HIV-infected macrophages release soluble
cytotoxic factors that can promote the apoptosis of by-
stander cells for example CD4+ and CD8+ T cells [8,9].
HIV-1 infection results in the lysis of T lymphocytes

(CD4+ T and CD8+ T cells) leading to their depletion,
a hallmark of HIV-1 pathogenesis. On the contrary,
* Correspondence: georges.herbein@univ-fcomte.fr
1Department of Virology, UPRES EA4266 Pathogens & Inflammation,
University of Franche-Comte, SFR FED 4234, F-25030 Besançon, France
2Department of Virology, Hôpital Saint-Jacques, CHRU Besançon, 2 place
Saint-Jacques, F-25030 Besançon cedex, France

© 2014 Kumar and Herbein; licensee BioMed
Creative Commons Attribution License (http:/
distribution, and reproduction in any medium
Domain Dedication waiver (http://creativecom
article, unless otherwise stated.
macrophages are relatively less prone to the cytopathic
effect of the virus [10,11]. Since the life span of HIV-1 in-
fected macrophage is long, thus they act as a source of virus
production for longer period of time in infected patients
[12]. In addition, macrophages are virtually present in every
organ system (although with different names), thus can dis-
seminate HIV-1 throughout the body of infected persons
including brain [13]. Therefore, how HIV-1 interacts with
macrophages and governs its life cycle in macrophage
environment is very important. In this review we will
summarize the interplay of HIV-1 and macrophages and
therapeutic interventions against HIV-1 in macrophages.
Review
HIV-1 replication in the macrophage
HIV-1 entry into macrophages
First step of HIV-1 entry into target host cells involves
virus ligand (virus surface glycoprotein gp120) and its
interaction with CD4 receptor which is present in both T
cells as well as in macrophages [14,15] (Figure 1). Second
step involves the fusion of viral envelope with host cell
membrane which is governed by the engagement of the
co-receptors (CCR5 or CXCR4) (Figure 1). Earlier it was
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Figure 1 Depicting key events of HIV-1 life cycle targeted by anti-retroviral drugs. The anti-retroviral drugs target four critical steps of the
viral life cycle which are fusion (or entry) of virion in the susceptible cell, reverse transcription, integration of proviral DNA into host chromatin
and polyprotein processing by viral encoded protease. Depending upon the steps they target, the anti-retroviral drugs are termed as fusion
(entry) inhibitors (a), reverse transcriptase inhibitors (b), integrase inhibitors (c) and protease inhibitors (d). Targeting single step at a time usually
results in the emergence of resistant mutants. ART is formulation of these inhibitors which suppresses HIV-1 growth to a significant extent. Please
note that virus assembly in macrophages takes place at both plasma membrane (e) as well as in virus containing compartments (f) [47]. Only key
proteins involved in HIV-1 life cycle in macrophage have been shown. Abbreviations: RT- reverse transcriptase, MA- matrix protein, IN- Integrase,
Vpr-Viral protein R, P- virus encoded protease, PIC- Pre-integration complex, MVB- multi vesicular bodies, LE- late endosomes and VCC- virus
containing compartment.
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believed that macrophages have CCR5 receptor and most
of the T cells have CXCR4 receptor resulted in macrophage
tropic and T cell tropic HIV-1 terminology [1]. Further
studies revealed that both the co-receptors are present
on macrophages as well as in T cells in vivo [1,11,16,17].
Notably the naturally transmitted HIV-1 viruses utilize
CCR5 for their infection, even though their primary tar-
gets are T cells not macrophages. In CNS, microglia
(resident macrophages of the brain) are infected via
CCR5 co-receptor. Common consensus is that these R5
and X4 viruses can replicate in both macrophages as
well as in T cells. However, their replication efficiency
varies in cell types which depend upon the cellular en-
vironment. Furthermore, viral progeny from macro-
phages and T cells can be identical however, they may
have different sets of host protein incorporated in their
viral particle (reviewed comprehensively in [1]).

Reverse transcription and host restriction factors
Whether HIV-1 enters via CXCR4 or CCR5 coreceptor, in
both cases the viral ribonucleoprotein complex is released
into the cytoplasm [11,18] where virus encoded reverse
transcriptase using viral genomic RNA as template, gener-
ates single stranded cDNA followed by double stranded
(ds)DNA [19,20] (Figure 1). However, the rate of reverse
transcription is slower in macrophages than what is ob-
served in T cells. Macrophages being terminally differenti-
ated non dividing cells have limited dNTP pools for
proviral DNA production [21,22]. Several reports have
shown that addition of deoxynucleosides to the primary



Kumar and Herbein Molecular and Cellular Therapies 2014, 2:10 Page 3 of 15
http://www.molcelltherapies.com/content/2/1/10
human macrophage culture remarkably enhances the
rate of HIV-1 reverse transcription proving that dNTP
pool is an important rate limiting factor in macro-
phages [21,23,24].
Additionally, macrophages possess certain inhibitory

factors which interfere with viral life cycle and are termed
as host restriction factors [25,26]. These host restriction
factors include tetherin, APOBEC3G and recently identi-
fied sterile alpha motif (SAM) domain and HD domain-
containing protein 1 (SAMHD1) [25-27]. APOBEC3G is
known to trigger G-to-A hypermutation in nascent DNA.
Tetherin (also called CD317/BST-2) hinders the release of
viral progeny from infected cells [26]. HIV-1 employs
several strategies to overcome these restriction factors
(reviewed in [28,29]). HIV-1 accessory protein Vif and
Vpu counteracts the APOBEC3G and tetherin respectively
[4,25,26]. Even there are reports describing tetherin antag-
onism by HIV-1 Nef protein [30,31].
SAMHD1 is a macrophage specific host restriction

factor which has triphosphohydrolase activity resulting
in hydrolysis of dNTPs into nucleosides and triphos-
phates. Thus SAMHD1 reduces the dNTPs pool in mac-
rophages to a certain level resulting in the inefficient
reverse transcription of HIV-1 genomic RNA into
proviral DNA [32]. However, Vpx protein of HIV-2 in-
duces proteasome-dependent degradation of SAMHD1
through CRL4DCAF1 E3 ubiquitin ligase [27]. Recently
McKnight research group, in order to search for host
restriction factors, screened several human genes and
identified 114 genes with significant impact on HIV-1
replication. Furthermore, their studies revealed that in-
hibition of all members of PAF1 family resulted in in-
crease in HIV-1 replication. Notably PAF1 is not
restricted to macrophages only, they are also expressed
in primary monocytes and T-lymphocytes, suggesting
exhaustive list of restriction factors against HIV-1 [33].
Recently Allouch and colleagues showed that cyclin-
dependent kinase inhibitor p21 inhibits HIV-1 replica-
tion in monocyte-derived macrophages (MDMs) by
interfering with reverse transcription of the viral genome
by a mechanism independent of SAMHD1. Additionally,
they demonstrated that p21 curtails the dNTP synthesis
through the down regulation of the expression of RNR2
(a subunit of ribonucleotide reductase) necessary for the
biosynthesis of dNTPs [34].

Nuclear transport
Newly synthesized HIV dsDNA is imported to the nucleus
as pre-integration complex (PIC) (Figure 1). Unlike T cells,
in macrophages PIC transport to the nucleus is indepen-
dent of cell division. PIC comprises of viral proteins which
includes reverse transcriptase, Vpr, integrase (IN), matrix
(MA, p17) and capsid protein (CA) in addition to newly
synthesized dsDNA. However, CA dissociates from PIC
prior to the nuclear entry. Vpr, IN and MA direct the
transport PIC through nuclear pore mediated by importin
α/β [35,36] (Figure 1). However, precise function of these
proteins in PIC nuclear transport is still a matter of debate
[11]. Unlike IN and MA, Vpr lacks nuclear localization
signal [37,38]. In addition, interaction between importin
α and Vpr is critical not only for the nuclear transport
of PIC but also for the replication of HIV-1 in macro-
phages [39]. Furthermore, in primary macrophages, host
cell protein emerin (an integral nuclear inner membrane
protein) plays an indispensible role in integration of
viral DNA into the chromatin [40,41]. Primary macro-
phages lacking emerin have poor rate of HIV proviral
DNA integration into the host chromatin however,
lack of emerin does not inhibit PIC entry into the nu-
cleus [40]. In addition, binding partners of emerin, the
LEM (LAP2 (lamina-associated polypeptide 2)/emerin/
MAN1) is necessary for the interaction of viral cDNA
with emerin and capability of emerin to support HIV-1
infection in macrophages [40]. However, Shun and col-
leagues demonstrated that HIV-1 can efficiently infect
dividing cells despite of the absence of emerin, sugges-
ting the role of emerin in HIV-1 infection restricted to
only macrophages [42]. Besides several other host fac-
tors are involved in the HIV life cycle in macrophages
have been reviewed recently [43].

HIV-1 transcription
HIV-1 transcription is governed by binding of viral pro-
teins and host factors to the long terminal repeat (LTR)
of the virus, which functions as viral promoter [44]. Host
factors include nuclear factor kappa B (NF-κB) family,
AP-1 (activator protein 1), Sp family, C/EBP (CCAAT
enhancer binding protein and NFAT (nuclear factor of
activated T cells). These host factors have specific bind-
ing sites present on LTR. On the other hand, viral pro-
teins Tat and Vpr also bind to the LTR to govern HIV-1
transcription [20,44]. Worth mentioning, host factors
could be cell type specific, for example C/EBP proteins
and their binding sites are critical for HIV-1 replication
in macrophages but not in CD4+ T cells [45]. In addition,
primary macrophages infected with HIV-1 having mutation
in C/EBP binding sites does not support HIV-1 replication.
On the other hand, primary CD4+ T cells, Jurkat and H9
cells support the replication of HIV-1C/EBP mutants [45].

HIV-1 assembly in macrophages
In case of primary CD4+ T cells, HIV-1 assembly takes
place at the plasma membrane [46]. On the other hand,
the corresponding site in macrophages is not yet fully
characterized [47]. Initial studies demonstrated the pre-
sence of HIV-1 virion particles in multivesicular bodies
(MVBs) or late endosomes (LEs) like structures [47,48]
(Figure 1). Even immuno-electron microscopy studies
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supported latter finding as their studies revealed the pres-
ence of MVB specific markers (for example CD53, CD9,
tetraspanins, CD81 and MHC II) in those structures
[47,49-51]. In addition, HIV-1 progeny released from in-
fected macrophages also possess these markers, further
strengthening the view that macrophages are released
from LEs or MVBs [47,50,52]. However, several studies re-
vealed that structures harboring HIV-1 in infected macro-
phages have some distinct characters which are not
characteristics of LEs or MVBs. These unique characteris-
tics include tubular connection to the extracellular space
and neutral pH [53]. The term ‘virus containing compart-
ments’ (VCCs) has been assigned to the structures which
act as the site for the virus assembly in macrophages [47]
(Figure 1). Interestingly, these VCCs are also present in
uninfected macrophages however, they become more
prominent upon HIV-1 infection [51,53]. Worth mention-
ing, VCCs have limited access to the innate and adaptive
immune effector molecules [47]. In contrast, several stu-
dies are in the favor of budding of HIV-1 progeny from
plasma membrane in infected macrophages [54]. Taken
together, these contrasting studies indicate that there is a
fair possibility that HIV-1 may bud from plasma mem-
brane as well as from VCCs (Figure 1). VCCs may act as a
safe house for HIV-1 in macrophages leading to HIV-1
reservoirs. However, elegant experiments are further
required to support this hypothesis.

Interplay between HIV proteins and cell signaling
in macrophages
Among HIV-1 proteins, the viral proteins Tat, Vpr and
Nef interfere with signaling pathways in macrophages.

Tat
The trans-activator of transcription (Tat) protein is a
86–101aa virus encoded pleiotropic protein which di-
rectly or indirectly modulates several steps of HIV life
cycle including replication, transcription and progeny re-
lease by regulating both cellular as well as viral gene ex-
pression [20,55-57]. In addition, Tat has been detected in
sera of HIV infected patients as well in cell culture set-
tings indicating its role as a modulator of cellular func-
tion in infected cells and also to target bystander cells
[20,58]. Furthermore, monocytes, macrophages and
microglia are activated by Tat protein [20]. In addition,
Tat is known to trigger the expression of HIV corecep-
tors (CXCR4, CCR5 and CCR3) in macrophages in a
dose-dependent manner which might positively influ-
ence HIV-1 infection [59]. Furthermore, Tat acts as a po-
tent chemoattractant for monocytes, macrophages and
dendritic cells [60,61]. Tat induces the production and
release of tumor necrosis factor alpha (TNF-α) from
macrophages [62]. Further, Tat mediated TNF-α induc-
tion was NF-kappa B (NF-κB) dependent and mediated
through activation of signaling cascades including PLC
(phospholipase C), protein kinase A and protein tyrosine
kinase [20]. In addition, Tat enhances the endogenous
levels of Ca2+ in macrophages which may subsequently lead
to the production of chemokines and pro-inflammatory
cytokines [63]. Latter events may be responsible for
HIV-1 induced neuropathogenesis and inflammation [64].

Viral protein R (Vpr)
Vpr is a virion-associated protein dispensable for viral
replication in T cells however is indispensible for viral
replication in macrophages [65]. Vpr has been localized
in cytoplasm as well as in nucleus of the infected cells
[66]. Vpr is a multifunctional protein which regulates
viral replication, cellular events like NF-κB-mediated
transcription, apoptosis and cytokine production [20,67].
Effect of recombinant Vpr (rVpr) has been demonstrated
in macrophages. Although high concentration of rVpr
resulted in significant cytotoxicity in macrophages how-
ever, at lower concentration rVpr has been shown to in-
crease the biological activity of several transcription
factors including NF-κB, c-Jun and AP-1 in promonocy-
tic cells and primary macrophages [68]. In addition rVpr
stimulates HIV-1 replication in acutely infected primary
macrophages. Furthermore, infection of macrophages
with Vpr-deficient viral mutants resulted in decreased
production of p24 which can be corrected by addition of
rVpr [69]. Moreover, Vpr independently enhances the
expression of cyclin-dependent kinase inhibitor 1A
(CDKN1A/p21) in macrophages whereas Vpr mutants
exhibit lack of upregulation of p21 and display reduced
viral replication [70]. Taken together, data strongly sug-
gest that Vpr enhances the viral replication in acutely
and latently infected macrophages.

Nef
Nef is expressed during early life cycle of HIV-1. Nef is a
27 kDa myristoylated protein required for efficient viral
replication in infected cells [71,72]. In addition, Nef en-
hances the survival of infected cells which helps in the
expansion of infectious viral population. Furthermore,
Nef hampers the immune system of infected patients by
several mechanisms including down-regulating the ex-
pression of MHC I, MHC II, CD28, CD4 [73,74] and by
activating PI3K [75]. Nef down-regulates the expression
of CD4 receptor in macrophages which serves two pur-
poses. Firstly, CD4 down-regulation in infected cells may
promote the release of viral progeny by avoiding seques-
tration of viral envelope by CD4 [76]. Secondly, it helps
in avoiding superinfection which otherwise could lead to
premature cell death [71,76].
In monocyte derived macrophages (MDMs) exogen-

ously added recombinant Nef (rNef) regulates the ex-
pression of several genes in a short time span (2 hours).
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These findings indicate a robust transcriptional pro-
gramming governed by Nef protein leading to the pro-
duction and secretion of soluble factors which in turn
activates STAT1 and STAT3 in primary monocytes/mac-
rophages [20,77]. Similarly, addition of rNef to the
MDMs cultures resulted in the rapid induction of tran-
scription factors NF-κB, AP-1, and c-Jun N-terminal
kinase and enhanced HIV-1 transcription. Furthermore,
in vitro treatment of macrophages with rNef has been
reported to trigger IKK/NF-κB, MAPK and IRF-3 signal-
ing cascades. Additionally, Nef induces robust phosphor-
ylation of MAPKs, including ERK1/2, JNK, and p38
Figure 2 Relationship between macrophages and T lymphocytes in H
HIV pathogenesis. Nef stimulates the release of soluble factors ICAM and C
infection, thereby favoring the expansion of the viral reservoir (a). In additio
HIV-infected cells. Interaction of CD95L and its receptor (Fas) present on un
infected CD4+ T cells, Nef inhibits the expression of proteins involved in ap
CD4+ T cells from cell death and further expands the viral reservoir. HIV reg
from the infected macrophages. TRAIL binds with its receptor (DR5) presen
gp120 interaction with CXCR4 receptor increases the expression of TNF-α o
This interaction results in the down regulation of the anti-apoptotic protein
in macrophages is known to induce macrophage colony stimulating factor
and upregulates the expression of anti-apoptotic proteins (f), favoring the
M-CSF has been suggested to increase apoptosis in infected macrophages
[20,78]. Notably, the role of Nef in HIV-HCV coinfected
macrophages has been recently described [79].

Contribution of macrophages to HIV-1
pathogenesis
HIV-1 pathogenesis is characterized by progressive cell
depletion involved in adaptive immunity including CD4+
T and CD8+ T cells [8,9]. Not only HIV-infected CD4+
T cells are lysed but uninfected CD4+ T cells more pro-
minently undergo apoptosis [80] (Figure 2). Nef plays dual
role in HIV-1 pathogenesis. On one hand, Nef protects
HIV-infected cells from cell death to favor efficient viral
IV-1 infection. Macrophages harboring HIV-1 play an important role in
D23 which makes uninfected CD4+ T cells more susceptible to HIV
n, Nef induces the expression of Fas ligand (FasL, CD95L) on
infected CD4+ T cells results in apoptosis (b). On the other hand in
optosis including ASK1, caspase 8 and caspase 3 (c), protects infected
ulatory protein Tat stimulates the production and release of TRAIL
t on uninfected CD4+ T cells and induces apoptosis (d). Furthermore,
n macrophages which interacts with TNFR2 present on CD8+ T cells.
Bcl-XL and ultimately leads to apoptosis (e). Moreover, HIV infection
(M-CSF) which inhibits the expression of TRAILR1 on macrophages
resistance to apoptosis of infected macrophages. Therefore, targeting
.
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production. On the other hand, Nef induces apoptosis in
bystander CD4+ T cells. Furthermore, it has been shown
that Nef-expressing macrophages release paracrine factors
including soluble ICAM and CD23 which increase the
lymphocytes permissively for HIV-1 infection [81]
(Figure 2). Additionally, Nef induces the expression of Fas
ligand (CD95L) on the surface of infected T cells. Further-
more, interaction between CD95L and its receptor present
on cells in close vicinity triggers apoptosis in bystander
cells [8,82] (Figure 2). Notably, Nef protects infected cells
from apoptosis via CD95-CD95L cis interaction by inhibit-
ing ASK1 (apoptosis signal-regulating kinase 1), caspase 8
and caspase 3 activation [20,83] (Figure 2). Worth men-
tioning, ASK1 is a common partner of Fas and TNF-α
mediated death signaling cascades [83].
In addition, uninfected macrophages have been shown

to confer resistance against apoptosis in productively
infected CD4+ T cells. Although expression of Nef by
these infected CD4+T cells is necessary for anti-apoptotic
behavior however, presence of macrophages further en-
hances the number of non-apoptotic cells via intercellular
contacts mediated by TNF stimulation [84]. This may be
the one of the mechanisms of promotion of HIV-1 reser-
voir in T cells by macrophages. Another regulatory protein
of HIV, Tat has been reported to stimulate the expression
of TRAIL TNF related apoptosis-induced ligand (TRAIL)
in U937, monocytes and primary macrophages [85,86],
which results in the apoptosis of uninfected cells (Figure 2).
This finding provides an insight into another mechanism
of elimination of bystander cells.
Recombinant glycoprotein gp120 (rgp120) (from X4

strain) has been reported to induce apoptosis of cyto-
toxic T cells (CTLs, CD8+ T cells). Furthermore, apop-
tosis is mediated by interaction between TNFR-2
present on the CD8+ T cells and TNF-α bound on the
surface of macrophages [9] (Figure 2). In addition, the
expression of TNFR-2 and TNF-α is positively regulated
by treatment with rgp120 or upon HIV infection [9].
Moreover, stimulation of TNFR-2 receptor in primary T
cells resulted in the down-regulation of anti-apoptotic
protein Bcl-XL which may further explain CD8+ T cell
elimination [87].
These results collectively revealed that macrophages

play a central role in the propagation of HIV-1 infection,
in depletion of CD4+ and CD8+ T cells, and in confer-
ring anti-apoptotic characteristics to the HIV infected
cells thereby favoring the expansion of the viral reservoir.

Macrophages and cytotoxic T cells (CTLs)
HIV-1 specific cytotoxic T cells (CTLs) play an import-
ant role in controlling HIV-1 infection during early stage
of infection [88,89]. CTLs act on the information pro-
vided by CD4+ T cells or antigen presenting cells [90].
However, in HIV-1 infected patients even effective CTLs
response is also hampered. Studies showed that Nef
downregulates the expression of HLA class I molecule
in infected CD4+ T cells resulting in their escape from
HIV-1 specific CTLs [91]. Interestingly, Fujiwara and
Takiguchi, in their in vitro study demonstrated that
HIV-1 specific CTLs are capable of effectively suppres-
sing R5 virus replication in infected macrophages [92].
Furthermore, their data revealed that HIV-1 infected
macrophages induce more proliferation of HIV-1 CTLs
as compared to infected CD4+ T cells. Taken together
data suggest the involvement of effective response of
macrophages during early phase of HIV-1 infection [92].
However, in vivo the role of HIV-1 infected macrophages
is largely influenced by their activation states [15].
Notably, macrophages are proposed to be in three kinds
of activation states which are designated as M1
(pro-inflammatory in nature), M2 (anti-inflammatory in
nature) and deactivated macrophages. Of note, M1 mac-
rophages produce cytokines IL-23, IL-12, IL1-β, TNF-α
and support Th1 response [15,93,94]. On the other
hand, in M2 activation state, macrophages secrete IL-10
and support Th2 responses [15,94]. According to pro-
posed model, during early stage of HIV-1 infection, M1
activation is predominant which favors robust HIV-1
transcription and formation of viral reservoirs [15]. As
the infection progressed, M1 state is off and M2 activa-
tion state is predominant followed by deactivation of
macrophages resulting finally in failure in presenting
antigen to the CTLs [15].

Search for apoptosis inducing agents in
HIV-infected macrophages
Induction of apoptosis in chronically infected T cells has
been suggested as a possible cure for HIV infection
[95,96]. Several new targets have been suggested in T
cells, alteration of which can induce programmed cell
death in infected T cells [97-99]. Vigorous efforts are
also required to search for similar targets in infected
macrophages.
HIV-1 infection in macrophages has been reported to in-

duce the production of macrophage colony stimulating fac-
tor (M-CSF). Furthermore, M-CSF positively regulates the
expression of anti-apoptotic proteins (Bfl-1 and Mcl-1) and
inhibits the expression of death receptor TRAIL-R1
(Figure 2). Additionally, targeting of M-CSF has been also
reported to enhance the apoptosis in macrophages [100]. In
another recent report, apoptotic effect of viral protein Vpr
has been examined in MDMs and THP1 macrophages.
Their finding revealed that Vpr is not able to induce apop-
tosis in MDMs and THP1. Unlike undifferentiated cells,
Vpr does not down regulate the expression of Bcl2 and in-
hibitors of apoptosis (IAPs) family members in macro-
phages [101]. Furthermore, down regulation of IAP1 and
IAP2 make the macrophages susceptible for Vpr meditated



Kumar and Herbein Molecular and Cellular Therapies 2014, 2:10 Page 7 of 15
http://www.molcelltherapies.com/content/2/1/10
apoptosis. Altering IAP activity has been suggested as a
possible way to induce apoptosis in infected macro-
phages [101].

Conventional therapies against HIV-1 in
macrophages
Currently, combinatorial antiretroviral therapy (ART) is
widely used in suppressing HIV-1 infection to a signifi-
cant level [102,103]. ART has made a remarkable contri-
bution in improving and enhancing life span of infected
patients [104]. HIV-1 growth kinetics is different in mac-
rophages and T cells suggesting varied impact of anti-
retroviral drugs against HIV-1 in these target cells. Here
we will briefly describe the potential contribution of
ART in HIV-infected macrophages.

Reverse transcriptase inhibitors (RTIs)
More than 25 compounds have been licensed for treat-
ing HIV in infected patients [105]. Out of them nearly
fifty percent are reverse transcriptase inhibitors (RTIs)
[105]. RTIs are of two types which are nucleoside reverse
transcriptase inhibitors (NRTIs) and non nucleoside re-
verse transcriptase inhibitors (NNRTIs) [13].

Nucleoside reverse transcriptase inhibitors (NRTIs)
NRTIs target reverse transcriptase enzyme which is respon-
sible for conversion of HIV genomic RNA into cDNA, an
important step in the life cycle of HIV (Figure 1). NRTIs in-
clude emtricitabine, tenofovir, abacavir, lamivudine, stavu-
dine, zalcitabine, didanosine and didovudine [105].
NRTIs mimic and compete with natural nucleotides

pool for incorporation into growing chain of nascent
HIV DNA. Notably, NRTIs require intracellular phos-
phorylation for conversion into functional inhibitors of
HIV. Since most of NRTIs lacks 3′ OH moiety, therefore
their incorporation into nascent HIV DNA leads to ter-
mination of DNA chain formation. Efficacy of these
NRTIs majorly depends upon the levels of dNTPs pools
[13,24]. As discussed earlier, macrophages being termin-
ally differentiated non dividing cells have limited pools
of dNTPs as compared to actively dividing cells [13,106].
Therefore, theoretically in this scenario, NRTIs will face
less competition with natural dNTPs in macrophages.
That may be the one of the reasons for better efficacy of
NRTIs in macrophages as compared to CD4+ T cells
[21,107,108]. In fact NRTIs have shown promising re-
sults in reducing the neuropathological consequences of
HIV encephalitis in the CNS and onset of HIV-
associated dementia (HAD) [108-110]. Notably, in CNS,
macrophages represent the major HIV infected popula-
tion [101]. In addition, NRTIs treatments in macro-
phages result in fewer emergences of resistant HIV
mutants as compared to lymphocytes [111].
Strikingly, NRTIs efficacy is remarkably different in
acutely and chronically infected macrophages. Exact
mechanism responsible for such observation is poorly
understood. Since chronically infected cells possess inte-
grated HIV DNA into host chromatin, HIV RNA pro-
duced via integrated DNA using transcription by host
RNA polymerase is therefore not susceptible to NRTIs.
Besides this, there must be several other mechanisms re-
sponsible for the difference in the efficacy of NRTIs be-
tween chronically and acutely infected macrophages
[13,108]. Notably, NRTIs are associated with several un-
desirable effects including their interference with cell
cycle and mitochondrial environment and also induce
apoptosis [112,113].

Non nucleoside reverse transcriptase inhibitors (NNRTIs)
Licensed NNRTIs include rilpivirine, etravirine, delavir-
dine, efavirenz and nevirapine. Unlike NRTIs, NNRTIs do
not require phosphorylation nor compete with natural
dNTPs pools for their action. NNRTIs act by binding to
the hydrophobic pocket near the reverse transcriptase ac-
tive site resulting in the inhibition of polymerization reac-
tion [13,106]. Since NNRTIs efficacy does not depend
upon the cellular dNTPs pools, therefore their impact on
acutely infected macrophages and CD4+ T cells is not
significantly different. Furthermore, macrophage colony
stimulating factor which positively regulates the dNTPs
pool, have no effect on the NNRTIs efficacy against HIV
[106]. Notably, NNRTIs have less adverse effects as com-
pared to NRTIs. However, Badley research group has
studied the side effects of NNRTI in Jurkat T cells and
PBMCs. They observed the induction of caspase and
mitochondrial dependent apoptosis by NNRTIs [114].
Like NRTIs, NNRTIs anti-HIV activities remarkably dif-

fer between acutely infected and chronically infected mac-
rophages. To be more precise, EC50 of NNRTIs against
acutely infected macrophages varies from 10 to 50 nM.
On the other hand, their effect is negligible against chro-
nically infected macrophages [13,108]. Reasons for these
observations are incompletely understood.

Integrase inhibitors
Chronic HIV infection is mostly characterized by integra-
tion of proviral DNA into the host chromatin (Figure 1).
This process called strand transfer is governed by HIV
encoded enzyme called integrase and is indispensible for
the establishment of latency [115,116] (Figure 1). Till date
three integrase inhibitors (raltegravir, elvitegravirs and
dolutegravir) have been approved for clinical use. Efficacy
of integrase inhibitors has been studied in MDMs and
lymphocytes and showed similar results [117]. Notably,
even single point mutation in integrase confers resistance
against the integrase inhibitor raltegravir [118]. However,
other integrase inhibitors are still effective in that situation
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[119]. Simultaneous targeting of multiple components of
HIV is necessary to avoid emergence of resistant mutants.

Protease inhibitors (PIs)
Till date 10 protease inhibitors (PIs) have been licensed
for the treatment of HIV-1 infection. Unlike reverse
transcriptase inhibitors, PIs act at post integration stage
of HIV-1 life cycle [106] (Figure 1). HIV protease helps
in the production of infectious viral progeny. PIs bind at
the active site of HIV proteases and make them non
functional (Figure 1). As compared to reverse transcript-
ase inhibitors, PIs are effective in both acutely as well as
chronically infected macrophages and CD4+ T cells.
However, concentration required for effective HIV inhib-
ition is more in case of chronically infected macrophages
as compared to CD4+ T cells [120,121]. In clinical situ-
ation, bioavailability of PIs in plasma and tissue specific
macrophages is considerably different. As a result, HIV
in tissue macrophages may escape from PIs [106]. Fur-
thermore, since so far no impact of PIs on integrated
HIV DNA has been reported, therefore lapse of PIs
treatment will rapidly result in the production and re-
lease of infectious HIV virions [106].

Entry/fusion inhibitors
Till date, enfuvirtide and maraviroc are the two approved
entry inhibitors against HIV [105]. Enfuvirtide (also called
Fuzeon, T-20) is a derived from gp41 (HIV envelope pro-
tein), which inhibit hairpin formation critical for the fu-
sion of viral envelope with host membrane [13,106,121]
(Figure 1). Enfuvirtide inhibits HIV-1 entry into different
target cells including macrophages, PBMCs and immature
dendritic cells [122]. However, comprehensive studies
of these inhibitors in primary macrophages are further
needed.
On the other hand, maraviroc is a small molecule

which binds with CCR5 receptor reversibly and prevents
the virus host interactions [13] (Figure 1). Notably, mar-
aviroc is so far the only CCR5 antagonist licensed for
the treatment of HIV-infected patients [123]. Due to ser-
ious side effects and lack of clinical efficacy, other CCR5
inhibitors including aplaviroc, vicriviro and TAK-779 are
no more considered for clinical development. Resistance
to maraviroc has been reported [124] and responsible
mechanisms have been studied [125]. New CCR5 antag-
onists are in different stages of development and cocktail
of these CCR5 antagonists with other ART may improve
the results against HIV infection.

Novel therapeutics against HIV-1 in macrophages
Multiple novel approaches are required to completely
eradicate HIV-1 from infected patients. Here we will
focus on novel molecular therapeutics tools emerged
against HIV-1 in macrophages.
Carbohydrate-binding agents (CBAs)
CBAs have been described as anti-HIV molecules which
specifically target glycans of HIV-1 gp120 [126,127]. As a
result of glycosylation of gp120, macrophages and den-
dritic cells lose their ability to recognize and present proc-
essed antigen to the CD4+ T cells to significant level,
resulting in inefficient transfer of infection to the CD4+ T
cells [13]. Balzarini and colleagues revealed that even brief
exposure of HIV-1 to CBA hampers the ability of imma-
ture dendritic cells (having glycan-targeting C-type DC-
SIGN lectin receptor) to bind HIV-1 and prevent syncytia
formation when co-inoculated with T cells [128]. Recently,
Balzarini research laboratory has shown that griffithsin
(GRFT), an anti-HIV CBA inhibits the interaction be-
tween DC-SIGN and HIV gp120 protein and efficiently
hampers the transfer of HIV-1 to CD4+ T cells [129]. Im-
pact of CBAs in chronic HIV-1 infection is poorly defined.

PI3K/Akt blocking agents
The PI3K/Akt signaling cascades have been widely rec-
ognized as a favorable target for anti-cancer strategies
[130]. Several groups demonstrated that PI3K/Akt inhib-
itors in cancer therapy are well tolerated and have mini-
mum toxicological profile in animal models and humans
[131,132]. In past few years inhibitors of PI3K/Akt sig-
naling have been employed as anti-HIV-1 strategy. PI3K/
Akt inhibitors have been shown to effectively inhibit
HIV-1 replication in acutely infected primary macro-
phages. PI3K/Akt inhibitors used by Chugh et al. were
optimally effective at 200 nM which is far above from
physiological relevant concentrations [133]. Despite this,
their results provide a valuable insight into a signaling
event specifically active in HIV-1 infected cells. Add-
itionally, the blockade of the PI3K/Akt pathway could
favor apoptosis and the clearance of infected cells. The
impact of PI3K/Akt inhibitors on chronically infected
macrophages needs to be further investigated.

Small interfering RNA (siRNA)
siRNAs are robust molecules which can practically de-
grade any viral RNA species [134]. siRNAs or shRNAs
have been found to be effective in inhibiting HIV-1 rep-
lication in several cell types including primary macro-
phages [135]. Information of siRNAs against HIV has
been compiled in the form of database called HIVsiDB
[136]. HIVsiDB has information of more than 750 anti-
HIV siRNAs [136]. In vivo toxicity, lack of effective de-
livery tools, generations of viral escape mutants are main
hurdles in the development of siRNA as an effective
therapeutic tool against HIV.

Immune based therapeutics
HIV-1 infection ultimately results in the depletion of
CD4+ T and CD8+ T cells. Efforts have been made in
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the direction of boosting immunity against HIV-1 [137].
For example, in various studies the application of IL-2,
IL7, IL-12 and growth hormone have been reported to
result in increase in CD4+ T counts in HIV-1 infected
individuals [138-141]. Interestingly, IL-2 along with ART
significantly reduces HIV-1 replication in infected pa-
tients as compared to ART only treated patients. How-
ever, upon treatment cessation virus bounce back
indicating the inability of IL-2 to enhance immunity for
the longer period of time [96,138]. In addition, role of
IL-15 has been suggested in improving functionality of
anti-HIV CTLs and natural killer (NK) cells in vitro
[142]. Moreover, IL-15 enhances simian immunodefi-
ciency virus (SIV) specific CD8+ T cells, NK cells and
decreases the number of SIV infected cells in lymph
node in infected rhesus macaque [143]. Surprisingly,
viral load was found to be increased more than two fold
upon IL-15 treatment [143]. Notably, IL-21 treatment in
SIV infected macaques resulted in increase in granzymes
B and perforins in NK cells and CD8+ T cells [96,144].
Benefits of such transient immunity evoke by interleu-
kins and impact of continuous use of such immune
based therapeutics on the health of HIV-1 infected indi-
viduals need to be carefully addressed.

IL-27, an anti-HIV cytokine
IL-27 is a cytokine belonging to the IL-12 cytokine fam-
ily and plays important roles in innate and adaptive im-
munity [145]. IL-27 is produced by epithelial cells,
dendritic cells and macrophages [146]. Several research
groups have documented the anti-HIV properties of IL-27
in MDMs, CD4+ T cells, immature and mature dendritic
cells [147]. Mechanistic details of anti-HIV cytokine IL-27
have been recently revealed. IL-27 down regulates the
expression of SPTBN1 (spectrin β nonerythrocyte 1), one
of the host factor required for HIV-1 infection in macro-
phages [148]. Furthermore, IL-27 down-regulates the
expression of SPTBN1 via TAK-1-mediated MAPK signal-
ing cascade [148]. Importantly, their results indicate that
SPTBN1 is a critical host component which can be targeted
to inhibit HIV-1 replication in one of the principal HIV-1
reservoirs, the macrophages.

Macrophage targeted carriers
Effective therapeutic agent must be complimented with
effective delivery tools for the successful delivery of re-
sults. Nanotechnology has made it possible to deliver
the therapeutic agents to specific cell types or anatom-
ical location which otherwise are not accessible by con-
ventional delivery methods [149]. It is assumed that
anti-HIV drugs delivered via nano-carrier can be select-
ively accumulate in infected cell types while uninfected
cells will have much lower concentration of drugs there-
fore, will have less side effects [150]. Wan and colleagues
have developed nano-carrier based system for drug de-
livery in macrophages using formyl methionine-leucine-
phenylalanine (fMLF) peptide-PEG derivatives [151].
fMLF are employed because fMLF receptors are specific-
ally present on phagocytic cells including macrophages
and fMLF binds to the receptors present on macro-
phages with high affinity [151,152]. Bio-distribution of
fMLF-PEG nano-carrier was studied in vivo, revealed the
greater accumulation of fMLF-PEG into macrophages of
kidneys, spleen and liver as compared to only PEG
[152]. Results are encouraging and suggest the feasibility
of specifically targeting HIV-1 reservoir in macrophages.

Myeloid cells of central nervous system (CNS) and
HIV-1
ART has significantly reduced morbidity and mortality
burden associated with HIV-1. However, despite of that
significant number of the patients receiving ART de-
velops HIV-1 associated CNS disorders [153,154]. Not-
ably, Zink and colleagues demonstrated that ART is able
to reduce the viral load in cerebrospinal fluid of ma-
caques infected with simian immunodeficiency virus
(SIV). However, they observed the presence of SIV DNA
in CNS [155]. In CNS, major reservoirs of HIV-1 are the
cells of myeloid origin which include meningeal macro-
phages, microglia and perivascular cells. Therefore, the
interplay between these cells and HIV-1 is of utmost im-
portance. Recently role of HIV-1 Tat protein has been
shown in disrupting synaptical architecture in vitro as
well in vivo [156-158]. Lu and colleagues have further
demonstrated the involvement of CNS resident myeloid
cells in deteriorating the synaptical architecture in re-
sponse to Tat [157].
In addition, recently role of cathepsin B secreted by

HIV-1 infected macrophages in neural apoptosis has
been also described [159]. Notably, low level of cathep-
sin B has been detected in the post-mortem brain tissue
of HIV-1 individual with HAD but not in normal indi-
vidual or HIV-1 infected individual with normal cogni-
tion. Their results suggest the involvement of cathepsin
B in HAD [159]. Altogether above findings provide a
valuable insight into the mechanism of HIV-1 associated
CNS disorder which involves myeloid cells, their secre-
tome and viral proteins. These novel findings will help
in generating new targets for managing HAD.

HIV-1 latency in macrophages and reactivation:
the “flushing out” therapy
Although highly active retroviral therapy (ART) has sig-
nificantly reduced viral levels (50 copies/ml) in infected
patients however, interruption of ART results in rapid
increase in viremia. HIV infection leads to the rapid de-
pletion of CD4+ T and CD8+ T cells. Despite there is
certain percent of cells where virus integrate with host
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chromatin. These cells do not produce virus in resting
condition, however produce it upon activation [160,161].
These cells represent a pool of latent infection and are a
main obstacle in complete eradication of HIV-1 from in-
fected patients [96,116,162]. Besides resting CD4+ T cells,
it is suggested that monocytes, macrophages, dendritic
cells and hematopoietic stem cells can be latently infected
with HIV [163-165]. There are experimental evidences in
the support of latency in monocytes [163,166].
Role of macrophages in dissemination of virus and

expanding viral reservoir especially in T lymphocytes has
been discussed elsewhere in this review. Prolonged life
span and resistance to HIV cytopathic effects make mac-
rophages as unique viral reservoirs. However, association
between HIV-1 latency and macrophages is less clear. HIV
infected patients on ART treatment are reported to have
only few macrophages infected in lymph nodes however
undergoes reactivation in case of opportunistic infections
[167]. Interestingly, FDA approved amphotericin B (an an-
tifungal drug) has been reported to reactivate HIV-1 in
THP89GFP cells (a model cell line for the HIV-1 latency
in macrophages) but not in T lymphocytes [168]. How-
ever, when amphotericin B induced THP89GFP cells are
co-cultured with J89GFP (latently infected T cells), they
activate latent HIV in latter cells [168]. In addition, re-
cently role of polybacterial challenge in activating latent
HIV-1 in the cells of monocyte/macrophage lineage has
been shown in vitro [169,170]. These findings indicate that
macrophages may be a site of HIV-1 latent infection. Un-
like CD4+ T cells, pre-integration latency in macrophages
may contribute to the viral reservoir formation to a sig-
nificant extent [171]. Mechanism/s responsible for post
integration latency in macrophages is poorly understood.
However, presence of host transcriptional repressors,
anti-HIV microRNA and lack of functional Tat could play
significant role in establishing post-integration latency in
infected macrophage [171]. For example host factor
C/EBPb is known to repressor HIV-1 transcription in
macrophages which may contribute to HIV latency. In
addition, in human microglial cells, CTIP2 (a highly
expressed transcriptional repressor in brain) is known
to inhibit the HIV-1 replication mediated by recruit-
ment of chromatin modifying complex involving
HDAC1, HDAC2 and methylase SUV39H1 [172]. Role
of CTIP2 has been suggested in post integration latency
in microglia cells [165,172].
Current efforts have been made in the direction of re-

activation of HIV from latent reservoir followed by their
complete removal by ART [96]. According to this hy-
pothesis, cells in which latency is reactivated should die
either due to viral cytopathic effect or due to recognition
by cytotoxic T cells [96,115]. Furthermore, the fresh in-
fection by viral progeny (released from lysed cells) will
be inhibited by ART.
Several kinds of new approaches have been employed in
reactivating HIV including the use of histone deacetylase
inhibitors (HDACi) such as valproic acid (VPA), trichosta-
tin (TSA), suberoylanilide hydroxyamic acid (SAHA) and
sodium butyrate, methylation inhibitors including BIX-
01294, 5-aza-2′deoxycytidine (Aza-CdR) and chaetocin,
NFκB activators for example TNF-α and bryostatin and
protein kinase C modulators and immune modulators in-
cluding IL-7 and IL-15 [96,105,116,173]. These new com-
pounds have shown significant results in reactivating
latency in CD4+ T cells and are at different stages of de-
velopment. For example first successful clinical trial has
been reported with HDACi, valproic acid (VPA)
[165,174]. However, these findings are not confirmed in
other trials [175,176].
Regarding efficacy of these novel compounds in reacti-

vating latency in macrophages, not many reports are
available. However, several HDACi have been tested in
ACH2 and U1 cell lines and found to be equally effective
in both cell lines [177]. Recently, Matalon and colleague
tested ITF2357 (givinostat) and VPA in ACH2 and U1
cell line. Their data revealed that ITF2357 is more po-
tent in activating latency as compared to VPA [178].
Notably, givinostat has been found to be safe in healthy
individuals in phase I trial [179]. Altogether data from
in vitro studies suggest that agents used in reactivating
latency in T cells have similar effects in cells of mono-
cyte/macrophage lineage. However, in clinical trials viral
load has been mainly determined in T lymphocytes. Im-
portantly, isolation of monocytes followed by production
of monocyte derived macrophages is rather a lengthy
process as compared to isolation of T lymphocytes. In
addition, brain resident macrophages represent the ana-
tomical sanctuaries where drug penetration is poor and
determination of drug efficacy in these sanctuaries is ra-
ther a difficult task [180,181]. Furthermore, the presence
of efflux pumps and array of metabolic enzymes in blood
brain barrier further put the efficacy of drugs in a diffi-
cult proposition. CNS resident macrophages play an im-
portant role in HAD, a severe morbidity of HIV-1 infection.
Treating HIV-1 needs holistic view where besides T lym-
phocytes cells of monocyte/macrophage lineage must be
taken into consideration. Ignoring one or other viral reser-
voir will not result in any favorable outcome.

Conclusion
Macrophages are among the early targets of HIV-1. They
also act as chronic and latent viral reservoirs. Although
ART has suppressed viremia in most of infected pa-
tients, complete eradication is not possible without
clearance of HIV-1 from latent reservoirs. Novel thera-
peutics options have emerged against these reservoirs.
However, delivery of therapeutic molecules in vivo is still
a major challenge. In the future, combinatorial therapies
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equipped with precise delivery tools can fulfill the scien-
tific dream of the complete eradication of HIV-1 from
infected patients.
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